OTIMIZAÇÃO DE PAINEL PRÉ-MOLDADO DE CONCRETO PROTENDIDO: PAINEL DE FECHAMENTO

SKOWRONSKI, Patrícia Alcântara 1; ALMEIDA, Sylvia Regina Mesquita de 2

Palavras-chave: otimização, branch and bound, concreto protendido; painéis.

1. INTRODUÇÃO

O concreto protendido consiste na submissão da peça a esforços permanentes de compressão, reduzindo as tensões de tração. Os cabos são tracionados e depois é feito o lançamento do concreto. Os alvéolos são formados com o uso de extrusora. Os cabos são mantidos sob tração até o endurecimento da peça, quando são soltos e ancorados no próprio painel. Então, estes são transportados, armazenados, montados e utilizados.

Técnicas de otimização têm sido utilizadas com o objetivo de minimizar o custo do painel, mantendo suas características funcionais e obedecendo aos limites estabelecidos pela NBR 6118 (ABNT, 2003). Esta consiste em uma busca racionalizada e automatizada resultando na solução ótima do problema, através de um algoritmo de otimização, o que torna o processo independente da experiência do analista. Um método de otimização bastante empregado é a Programação Linear Seqüencial (PLS), visto que obtém soluções de problemas em que a função objetivo e/ou pelo menos uma das restrições do problema são não lineares. A PLS lineariza as funções não lineares, transformando o problema em linear. Este método foi usado neste trabalho juntamente com o otimizador comercial LINGO (LINDO 2001). Também foi implementado o algoritmo de programação discreta Branch and Bound.

2. METODOLOGIA

Os painéis considerados neste estudo são de fechamento, sem função portante, de seção transversal retangular e alvéolos circulares, possuindo as características geométricas apresentadas na figura 1, onde *b* é a largura do painel.

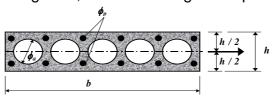


Figura 1 – Seção transversal.

A altura do painel (h), o diâmetro dos alvéolos (ϕ_a) e da armadura de protensão (ϕ_p) são variáveis do projeto, ou seja, sofrerão alterações durante a otimização. As demais grandezas são parâmetros do problema de otimização, ou seja, serão lhes atribuídos valores iniciais que permanecerão constantes durante o processo.

Tabela 1 – Parâmetros de projeto – características geométricas

Vão do painel	L = 600 cm
Largura do painel	b = 150 cm
Comprimento da pista de protensão	Lp = 15000 cm
Número de alvéolos	$n_a = 11$
Número de fios	$n_f = 24$

Os principais carregamentos atuantes no painel de fechamento são o seu peso próprio, o peso do revestimento, as cargas transitórias decorrentes da execução e a carga de utilização, que é a pressão do vento. Ainda atua nos painéis a força de protensão que é uma ação permanente. Logo após a protensão, essa força tem o

valor (P_0), que é a força aplicada à armadura pelo equipamento de tração deduzidas as perdas imediatas. Ao longo do tempo, a força de protensão sofre reduções devidas às perdas diferidas e assume o valor (P_∞).

As combinações de carregamento a serem analisadas na fase transitória são: momento de corte dos fios, transporte da pista para o armazenamento na indústria (transporte 1), armazenamento (armazenamento 1); transporte da indústria para a obra (transporte 2), e armazenamento na obra (armazenamento 2). As combinações a serem consideradas na etapa de serviço para protensão completa são as combinações freqüentes e rara. Para o caso de protensão limitada, as combinações a serem consideradas são a quase permanente e a freqüente. As combinações de carregamento a serem consideradas e as verificações necessárias em relação às tensões normais, assim como os limites de tensões a serem verificados são apresentados na tabela 2.

Tabela 2- Combinações de carregamento e verificações de tensões normais

Tipo de combinação	Seção	Bordo	Etapa	Restrição
Transitória	Meio do vão	Superior	Transporte I	$-\sigma_{P0} + \beta_2 \sigma_g + \sigma_{cj} \le 0$
Transitória	Meio do vão	Inferior	Transporte I	$\sigma_{P0} + \beta_2 \sigma_g - \sigma_{ctj} \le 0$
Transitória	Meio do vão	Inferior	Transporte II	$\sigma_{P_{\infty}} + \beta_2 \sigma_g - \sigma_{ct} \le 0$
Serviço *	Meio do vão	Externo	CF	$-\sigma_{P_{\infty}} + \psi_1 \sigma_q + \sigma_c \le 0$
Serviço *	Meio do vão	Interno	CF	$\sigma_{P_{\infty}} + \psi_1 \sigma_q - \sigma_{ct} \le 0$
Serviço *	Meio do vão	Interno	CQP	$\sigma_{P\infty} + \psi_2 \sigma_q \le 0$
Serviço **	Meio do vão	Interno	CF	$\sigma_{P_{\infty}} + \psi_1 \sigma_q \le 0$
Serviço **	Meio do vão	Externo	CR	$-\sigma_{P\infty} + \sigma_q + \sigma_c \le 0$
Serviço **	Meio do vão	Interno	CR	$\sigma_{P\infty} + \sigma_q - \sigma_{ct} \le 0$
β - coeficiente de majoração de ação dinâmica ψ_1 - coeficiente de ponderação de ação freqüente ψ_2 - coeficiente de ponderação de ação quase permanente			CQP – combinação quase- permanente CF – combinação freqüente CR – combinação rara	
 * - só necessária no caso de protensão limitada 				

A função objetivo da otimização representa o custo do painel (Eq. 1).

** - só necessária no caso de protensão completa

Custo =
$$\left(b \ h - \frac{\pi \ \phi_a^2}{4} \ n_a\right) L \ C_{cpm} + \left(\frac{\pi \ \phi_p^2}{4}\right) \ n_f \ L \ \gamma_{AP} \ C_{AP} + \left(b \ h - \frac{\pi \ \phi_a^2}{4} \ n_a\right) L \ \gamma_{conc} \ C_t$$
 (1)

Tabela 3-Legenda da Função Objetivo

n,	Número de alvéolos	C_{cpm}	Preço do concreto pré-moldado por m³
	Número de fios da armadura ativa		Preço do aço de protensão por kg
γac	Peso específico do aço de protensão	Ct	Preço do transporte por kg
γ_{co}	Peso específico do concreto		

3. RESUTADOS E DISCUSSÃO

O problema apresentou os mesmos resultados para protensão completa e limitada, o que evidencia que as restrições relativas ao comportamento em serviço não são determinantes para o dimensionamento dos painéis de fechamento e que as

SKOWRONSKI, P. A; ALMEIDA, S. R. M. Otimização de painel pré-moldado de concreto protendido: painel de fechamento. In: CONGRESSO DE PESQUISA, ENSINO E EXTENSÃO DA UFG - CONPEEX, 3., 2006, Goiânia. **Anais eletrônicos do XIV Seminário de Iniciação Científica** [CD-ROM], Goiânia: UFG, 2006. 3 p.

combinações transitórias são mais relevantes. A tabela (4) apresenta os resultados do problema obtidos com o algoritmo PLS, com o otimizador comercial LINGO (LINDO, 2001) e os resultados obtidos com o Branch and Bound.

			14 1
Tabe	IO /I	RACH	Itados
Iauc	ıa + –	コノロシロ	แสนบอ

Algoritmo	H _P (cm)	ϕ_a (cm)	ϕ_P (mm)	Custo (R\$)
PLS	13,64	9,64	3,57	247,54
LINGO	13,64	9,64	3,57	247,54
Arredondamento	14,00	9,00	4,00	289,10
Branch and Bound	10,00	6,00	4,00	260,58

O melhor resultado foi o obtido com a implementação do algoritmo de PLS e com o otimizador comercial LINGO, que foram coincidentes. No entanto, os valores obtidos para altura do painel, para o diâmetro do alvéolo e para o diâmetro da armadura protendida não se enquadram nas dimensões usuais e disponíveis no comércio, as quais variam em centímetros. Com o arredondamento das dimensões para padrões comerciais, a favor da segurança, o resultado do problema fica com um custo maior que o encontrado pelo algoritmo Branch and Bound.

4. CONCLUSÃO

Observa-se que o algoritmo de PLS apresentou bons resultados, os quais coincidiram com os obtidos com o uso do programa comercial LINGO. O pequeno tempo de processamento evidencia a eficiência das técnicas de otimização na solução de problemas de projeto de painéis pré-moldados. No entanto, o arredondamento final dos resultados, necessário quando se empregam métodos que utilizam variáveis de projeto contínuas, constitui uma pequena limitação da implementação. Pode-se concluir que o algoritmo de programação discreta Branch and Bound é bastante vantajoso para solucionar o problema, pois suas variáveis assumem valores discretos, eliminando a necessidade de arredondar as variáveis do projeto ótimo, gerando o menor custo possível de fabricação.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ABNT, 2003. **NBR 6118: Projeto de estruturas de concreto – Procedimento.** Rio de Janeiro, 2003

ALMEIDA, S. R. M. e ALMEIDA, A. F. – Optimization of precast slabs made of hollow core panels, **XXV CILAMCE - International Congress on Computational Methods in Engineering**, Proc., Vol 1, November 2004, 16 p.

ALMEIDA, S. R. M e SKOWRONSKI, P. A. Otimização de painéis de fechamento alveolares de concreto protendido usando algoritmo de programação linear seqüencial. In: Anais do 47° Congresso Brasileiro do Concreto. Olinda, PE: IBRACON, 2005. pp 1-11.

HAFTKA, R. T.; GÜRDAL, Z. **Elements of Structural Optmization**. v11, 3^a Revisão. Netherlands: Kluwer Academic Publishers, 1996. 481p.

LINDO, **LINGO – The modeling language and optimizer.** Chicago: LINGO Systems Inc., 2001. 524p.

SILVA, E. C. N. **Otimização aplicada ao projeto de sistemas mecânicos**: notas de aula. São Paulo: USP. 2004. 151f.

FONTE DE FINANCIAMENTO – CNPq/PIBIC

- ¹ Bolsista de iniciação científica/Escola de Engenharia Civil, pattyskeng@yahoo.com.br
- ² Orientadora/Escola de Engenharia Civil, sylvia@eec.ufg.br