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Abstract

In a previous paper a distinct proposal for measuring the variance of quadrature operators [Phys. Lett. A 238 (1998)

223], based on the projection synthesis method [Phys. Rev. Lett. 76 (1996) 4148], was presented. The scheme requires

the use of an unavailable state, named polynomial state (PS). In this report, we discuss the generation of this state in

travelling waves, appropriate for the method, and consider its statistical features.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

An important issue of quantum optics in the
last years concerns the quantum state engineering

(QSE), both for field [1–8] and atomic states

[9,10]. Its relevance comes from potential applica-

tions on advanced topics, as teleportation [11],
0030-4018/$ - see front matter � 2004 Elsevier B.V. All rights reserv
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quantum computation [12], quantum communica-

tion [13], quantum cryptography [14], quantum li-

thography [15], decoherence of states [16], etc. The
field state being tailored may refer to either sta-

tionary modes trapped inside a high-Q cavity

[1,2] or travelling modes [3–8]. In the first case

QSE can be implemented either via resonant [1]

or via nonresonant (dispersive) atom-field interac-

tion [2]. In the second case QSE may employ: (i) a

coherent state travelling throughout a nonlinear

medium [17]; (ii) an array of beam-splitters [3–5],
ed.
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(iii) a Mach–Zehnder interferometer including a

nonlinear medium [6], etc.

In a previous paper, Barnett and Pegg [18]

showed that an apparent exotic state, then named

reciprocal binomial state (RBS), not available in
laboratories, was crucial for their proposed exper-

imental scheme determining the phase distribution

P(h) describing an arbitrary state of a running-

field. Later on [19], it was shown that the projec-

tion synthesis method proposed in [18] can also

be used to determine the Husimi Q-function of a

field state and the variances of quadratures opera-

tors. In these cases, construction of other un-
known states, respectively named complementary

coherent state (CCS) and polynomial state (PS),

were crucial for such determinations. The genera-

tions of the RBS and CCS have been addressed

in [20,21] for fields in travelling modes, as required

in [18]. Here we will consider the generation of PS

for fields in travelling modes, suitable for the pro-

jection synthesis method. Beyond its potential use
for measuring variance of quadrature operators

[19] the generation of this exotic state may provide

us new insights – one example being its use to

construct relevant superpositions, such as c1jn1æ+
c2jn2æ [22].

This report is organized as follows: in Section 2

we introduce the PS and propose its generation

through a scheme developed in [5]. The fidelity of
the generation process is calculated through the

Langevin method. For completeness, Section 3

contains a resumed study about some statistical

properties exhibited by the PS. Section 4 contains

the comments and conclusion.
2. Generation of PS

The PS was defined previously as [19],

jPSi ¼ N
XN
n¼0

N

n

� ��1=2 HN�n x=
ffiffiffi
2

p� �
e
inp
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2N � 2n� 1Þ!!
p jni;
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where x is a parameter of the (auxiliary) PS that

selects the value of quadrature operator x̂ of the

arbitrary state being measured. N is the normali-

zation constant
N ¼
XN
k¼0

N

k

� ��1 H 2
N�k x=

ffiffiffi
2

p� �
2ðN � kÞ � 1ð Þ!!

" #�1=2
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As the PS is a truncated state, we may employ
the scheme introduced in [5]. For completeness,

we present a brief summary showing the relevant

steps of this procedure. In this scheme a desired

state jWæ composed of a finite number of Fock

states jnæ can be written as

Wj i ¼
XN
n¼0

Cn nj i ¼ CNffiffiffiffiffi
N !

p
YN
n¼1

ây � b�
n

� �
0j i

¼ CNffiffiffiffiffi
N !

p
YN
k¼1

D̂ðbkÞâyD̂yðbkÞ 0j i; ð3Þ

where D̂ðbnÞ stands for the displacement operator

and the bn are the roots of the polynomial equa-

tion

XN
n¼0

Cnffiffiffiffi
n!

p ðb�Þn ¼ 0: ð4Þ

According to the experimental setup shown
in the Fig. 1 we have that the outcome state

is (assuming zero-photon registered in all detec-

tors),

Wj i �
YN
k¼1

D̂ðakþ1ÞâyT n̂D̂yðakÞ 0j i; ð5Þ

where T is the transmittance of the beam splitter

and ak are experimental parameters. After some al-

gebra Eqs. (3) and (5) can be connected. These

equations become identical when a1 ¼
�
PN

l¼1T
�lalþ1 and ak=T�N�k+1(bk�1�bk) for

k=2,3,4,. . .,N. In the present case the coefficients

Cn are given by those of the PS, hence the roots

b�
k of the characteristic polynomial in Eq. (4) are

calculated and the displacement parameters a�k
can be obtained for specific values.

The success probability P of producing the PS

is shown in Fig. 2, for N=5. In this figure, for

each small x-interval, we have used the transmit-
tance of the beam-splitters in a way to optimize

the success probability. Since the ideal procedure

would use the appropriate transmittance for each

value of x, this approximation avoiding lengthy



0

1 1 1

ψ

L 1
α αL αL N+12

D DD 1 N2

Fig. 1. Experimental setup of the BSA scheme (cf. [5]).
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Fig. 2. Plot of success probability (%) versus x.
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computer calculation, causes the oscillations in

the success probability shown in Fig. 2. It is as-
sumed that the beam splitters used for photon

adding have the same transmittance. We note in

Fig. 2 that the success probability is about

P ’ 0:5%. Similar plots for N=3 and N=7 show

that P ’ 5% and P ’ 0:05%, respectively (not

shown in figures). So, the probability decreases

for growing N, as expected.

Till now we have assumed all detectors
and beam-splitters as ideal. While excellent

beam-splitters are available in laboratories by the

advanced technology, the same is not true for pho-

todetectors in the optical domain, although recent
progress has been achieved in this direction [23].

So, let us now take into account the quantum effi-

ciency g of the photodetectors. To this end we use

the Langevin operator technique, as applied in [8],

in order to obtain the fidelity of the PS got from

the scheme of [5].
In this scheme the output operator accounting

for the detection of a field âout is given by

âout ¼
ffiffiffi
g

p
âin þ L̂a, where g stands for the efficiency

of the detector and L̂a, acting on environment

states, is the noise or Langevin operator associated

with losses in the detector registering photons in

the mode a. We assume that the detector couple

neither different modes a,b nor environment modes
(associated to the Langevin operators L̂a), so the

following commutation relation is readily ob-

tained: ½L̂a; L̂
y
a� ¼ 1� g.

The ground-state expectation values for Lange-

vin operator is hL̂aL̂
y
ai ¼ 1� g, which is useful rela-

tion mainly for optical frequencies, when the state

of the environment can be very well approximated

by the vacuum state, even for room temperature:
KTenv� (1/40) eV and hmopt�1 eV; hence hmopt/
KTenv�40 and we find that Ænenvæ=1/[exp(hmopt/
KTenv)�1]�0.

Let us now apply the scheme of the [5] to the

present case. For simplicity we will assume all de-

tectors having good efficiency (g J 0.9) and

T.1. These assumptions allow us to simplify

the resulting expression by neglecting terms of or-
der higher than (1�g)2. When we do that, instead

of the jPSæ we find the state jWFEæ describing the

field plus environment, the latter standing for

losses coming from the nonunit efficiency detec-

tors. We have,
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Fig. 3. Plot of fidelity versus x for N=5 and the photodetector
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WFEj i � ð ffiffiffi
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� DðaN�1Þ . . . âyT n̂Dða1Þ 0j i

þ RN�1DðaNþ1ÞL̂
y
NT

n̂DðaN ÞâyT n̂

� DðaN�1Þ . . . âyT n̂Dða1Þ 0j i; ð6Þ

where, for brevity, we have omitted the kets corre-

sponding to the environment. Here R is the reflec-

tance of the beam splitter, L̂
y
0 ¼ 1 is the identity

operator and L̂k, k=1,2,. . .,N, stand for losses in

the first, second, . . ., Nth detector. Although the

L̂k0s commute with any system operator, we have
maintained the order above to keep clear the set

of possibilities for photo absorption: the first term,

which includes L̂
y
0 ¼ 1, indicates the probability for

nonabsorption; the second term, which include L̂
y
1,

indicates the probability for absorption in the first

detector; and so on. Note that in case of absorp-

tion at the kth photodetector, the annihilation op-

erator â is replaced by the L̂
y
k creation Langevin

operator. Other possibilities such as absorption

in more than one detector lead to a probability

of order lesser than (1�g)2, which has been

neglected.

Next, we have to compute the fidelity [24],

F ¼ khW j WFEik2, where jWæ is the ideal state

given by Eq. (5) and jWFEæ is the state given in

the Eq. (6). The fidelity of PS versus parameter x
is shown in the Fig. 3, for N=5 and three values

of the photodetection efficiency. Note that the fi-

delity increases when the parameter x grows,

showing that high values of fidelity occur when

the PS resembles the vacuum state. It also shows

that fidelity increases when efficiency g grows, as

it should.

The foregoing results show that losses caused
by the presence of non-ideal photodetectors will

transform our desired pure PS in a mixed state.

As consequence, employing a modified state to

measure a certain property one will end up with
a modified property. So, a pertinent question is

how to circumvent this difficulty. Fortunately,

there is a solution to this problem provided by

the inverse Bernoulli convolution (IBC), allowing
one to reconstruct the desired pure state from

the mixed state. Such procedure has been imple-

mented in distinct scenarios [25,26]. In this proce-

dure a pure state, represented by the density

operator q̂p ¼jWihW j, can be reobtained from

the smeared data contained in the mixed density

operator. From these data contained in the density

operator qout(k,g) one recovers the pure state q̂p as
[26]:

q̂p ¼
1

p0 1ð Þ
X

k1;...;kn

bo;k1 g�1
1

� �
. . . bo;kN g�1

N

� ��
� pk gð Þqout k; gð Þg; ð7Þ

where the functions bo;ki are defined by

bl;mðzÞ ¼
m

l

� �
zl 1� zð Þm�l ð8Þ
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and k=(k1,. . .,kN), g= (g1,. . .,gN), with kj being

the number of counts obtained in the detectors

Dj with efficiency gj. Here pk(g) stands for the

probability of this composite event. The IBC is rel-

evant when the fidelity of the wanted state is not
enough for a certain purpose. The reconstruction

given in the Eq. (7) can be applied to whatever sta-

tistics of interest [26]. Now, a question emerging

concerns the number of data required for the

IBC. As explained in [25] one needs to construct

the photocount distribution in the detectors Dj.

Let N
0
be the total number of measurements (each

one involving all detectors) and Xn the number of
those corresponding to n photons (n=0,1,2,. . .,M);

M is a cutoff parameter for large photon number.
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Fig. 4. Plots of the photon-number distribution Pn versus n, for the
The choice on N
0
leads to a statistical error (SE) in

the photocounting scheme. For a given cutoff M

there exists a minimal N 0M
� for every small � that

if N 0 > N 0M
� then the SE is smaller than �. So, the

cutoff reduces the SE by increasing the number
of measurements. In resume, the required number

of data depends on the desired accuracy for each

specific target (see, e.g., Eq. (20) of [25]). The

method is somewhat slow-going, but it does not

waste any trials [25,26].

At this point the following enlightening expla-

nation is opportune: the IBC is no more than a

theoretical correction, hence not able to experi-
mentally purify the mixing caused by non-ideal

detectors. The reconstruction is made upon
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computer data, not being an action upon the run-

ning field states themselves. However, when apply-

ing the modified (smeared) output state in the

measurement of certain property of another field

state one finally ends up with some measurement
data (a set of numbers inside a computer and not

a quantum state) these numbers being the final

outcome of the entire procedure. Reconstruction

of the initial data (the auxiliary pure state) yields

the reconstruction of the final data (the measured

property of another field state). So, it does not

matter how this property has been obtained,

whether theoretically or not. It is also pertinent
mentioning that the IBC will no longer be used

when technological advances achieve photodetec-

tors with efficiency near 100%.
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Fig. 5. Plot of the Mandel Q-parameter for the PS as a function

of x for N=2 (pointed curve), N=3 (solid curve), and N=5

(dotted curve).
3. Statistical properties of the PS

3.1. Photon number distribution

From Eq. (1) defining the PS we find the statis-

tical distribution Pn= jCnj2, where the Cn are the

coefficients appearing in the expansion of the PS
in the Fock�s basis: jPSi ¼

PN
n¼0Cn jni. In this

way we obtain,

Pn ¼ N2
N

n

� ��1 H 2
N�n x=

ffiffiffi
2

p� �
½2ðN � nÞ � 1�!! :

ð9Þ

Fig. 4 shows the statistical distribution, Pn ver-

sus n, for various values of the parameter x. We

note that, for certain choices of parameters, the

statistical distribution of the PS resembles that of

the thermal state with hn̂i ¼ 0:76 (Fig. 4(a), for
x=5.02); that of a coherent state jaæ with a=1.3

(Fig. 4(b), for x=4.90) and that exhibiting oscilla-

tions (Fig. 4(c), for x=2.44) an effect connected

with interference in the phase space [27]. �Exotic�
distributions are also displayed by the PS, as one

in which Pn=0.5(dn,0+dn,N), where only the lowest

and highest states partake the statistical distribu-

tion (see Fig. 4(d) for x=0.18). Another interesting
feature appears for x=0 when the statistical distri-

bution exhibits parity, being either even or odd ac-

cording to the parity of the Hilbert space

dimension N (not shown in figures).
3.2. Sub-Poissonian statistics

Sub-Poissonian (SP) effect is usually studied via

the Mandel Q-parameter [28],

Q ¼ Dn̂2 � n̂h i
� �

= n̂h i; ð10Þ

where Dn̂2 ¼ hn̂2i � hn̂i2, with hn̂ki ¼ hPS j n̂k j PSi,
k=1,2. The SP effect results when Q<0, namely:

Dn̂2 < hn̂i.
The substitution of Eq. (1) in the Eq. (10) fur-

nishes the value of the Mandel Q-parameter for

the PS. Fig. 5 exhibits plots of the Mandel Q-pa-
rameter as function of x, for N=2,3,5.

Note that the x-interval for which the PS exhib-

its SP-effect decreases when the dimension N of the

Hilbert space grows. The effect itself diminishes for

growing N and, for large values of x, the PS no

longer exhibits the SP-effect. We have observed

that for large values of N (N>20) the SP-effect

of the PS disappears.
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4. Comments and conclusion

In this brief report, we have studied the genera-

tion of the PS, required in the scheme introduced

in [18] to measure variances of quadrature opera-
tors – as shown in [19]. Since the scheme in [18]

deals with travelling fields, we have used a method

in [5], appropriated for this scenario. The ideal

case, where the components of the apparatus (mir-

rors, beam-splitters, photodetectors) are assumed

excellent, was considered and the success probabil-

ity was calculated as a function of x (Fig. 2). We

have also discussed the influences of non-ideal
components upon the fidelity F of the state. For

typical values available by the recent technology

we have taken ideal beam-splitters and photode-

tectors having efficiencies g=90% corresponding

results exhibited in Fig. 3 [29].

It is worth mentioning that the success proba-

bility of a generation-method depends on the de-

sired state being prepared. This explain why the
present success is greater than that obtained for

the state exemplified in [5]. This comparison shows

that, given a desired state to be prepared and var-

ious available generation-methods, the question

about which of them is the best will be answered

only after a comparison case by case.

For completeness we have also studied some in-

teresting statistical features of the PS, such as pho-
ton number distribution and sub-Poissonian

statistics (Section 3, Figs. 4 and 5).
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