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We have studied the ground state energy of 2-D few charged-spinless-particles confined by a
parabolic potential, using quantum Monte Carlo method. This is a model to treat systems like
semiconductors quantum dots.

PACS numbers:

I. INTRODUCTION

The technological advance in the preparation and in
the fabrication of microstructures yields nowdays to con-
fine electrons and atoms in restricted regions. The main
experimental progress in this area are the semiconduc-
tor quantum dots [1] and the laser trapps of cold atoms
[2]. The semiconductor quantum dots constitute a quasi
ideal system for the study of the physical properties of a
two-dimensional system of strongly interacting electrons,
laterally confined by an external potential. From the the-
oretical point of view, the computing simulation [3] has
achieved the greatest success inusmuch as the analytical
approximated methods [4, 1] has encountered dificulties,
since both the many body effects and the indivicual be-
havior of each electron have indeed a crucial role in these
systems, and the major dificulty in the theoretical meth-
ods is due to the fact that the electrons in the quantum
dots are confine in a very small area and hence they can
not be treated as part of a continuous distribution of
charges. These systems constituted of a finite number
of electrons, confined in small regions in semiconductor
structures are known as quantum dots and more recently
also as artificial atoms.

The Schrödinger equation is the basis for the micro-
scopic description of materials in the various states of
aggregation. But, its analytical solution is possible only
for some very simple models. Because of this, the de-
velopment of numerical methods for the solution of this
equation is of great interest. Several methods have been
developed in recent years and among them one is been
specially successful and has been named the Diffusion
Monte-Carlo Method (DMC). This method has been
showing to be adequate to describe the ground state of
various systems.

In this work, we want to present a calculation of the
ground state energy of various two-dimensional clusters
of charged spinless particles using a Diffusion MOnte
Carlo (DMC). These objects are of great interest because
they manifest some atomic-like properties.

We organize our paper as follows. In the section II we
present the model for the quantum dots and we present
the Quantum Monte Carlo method. The section III con-
tains our results and the last section IV contains our
conclusions.

II. THE MODEL AND METHOD

The usual model for a disk-shaped vertical quan-
tum dot is a 2-dimensional system of N electrons moving
in the z = 0 plane, confined by a parabolic lateral con-
fining potential Vcon(r)[5]. The Hamiltonian is given by:
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In Eq. 1, me is the electron mass and ε is the dielectric
constant. We have used atomic units defined by: ~ =
e2/ε = me = 1.

1. Monte Carlo Integration

In the DMC for some multidimensional integral
we have[6]:
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P (x0, · · ·, xN−1) = 1.

According with the last equation the integral of the
propability P (n) = 1 and the estimate of the first in-
tegral is I ′:
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Ň∑

i=1

f
(
x

(i)
0 , · · ·, x(i)

N−1

)
,

2. Diffusion Monte Carlo method

The basis of Diffusion Monte Carlo method
(DMC) is the Schrödinger equation in imaginary time.
One can think of this equation as a diffusion equation
(with diffusion constant D = ~2/2m) with an additional
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branching term, given by the potential energy[7]. This
equation can be written as

−∂φ (x, τ)
∂τ

= (H − ET )φ (x, τ) (2)

If φ (x, 0) is expanded in the eigenvectors of the
H, with eigenvalues E1, E2, ..., Ek, then φ evolve in time
as:

φ (x, τ) = C0Φ0e
−(E0−ET )τ +C1Φ1e

−(E1−ET )τ + · · · (3)

φ (x,∞) ≈ C0Φ0e
−(E0−ET )τ

We seek a quantum mechanical operator with the
following projection properties:

φ (x2, τ2) =
∫

G(x2, τ2; x, τ1)φ (x, τ1) dx (4)

Here G(y, τ2; x, τ1) is the Green’s function which
projects an initial state|φ, τ1〉 forward in imaginary time
to |φ, τ2〉.

|φ, τ2〉 = G(τ2; τ1) |φ, τ1〉 (5)

G(x2; x1, δτ) = 〈x2| e−Hδτ |x1〉 (6)

For small values of δτ we may use the commutator
expansion, using H = K + V :

e−Hδτ ≈ e−
1
2 V δτe−Kδτe−

1
2 V δτ ≡ GdifGtax (7)

G−GdifGtax =
1
2

[K, V ] (δτ)2 + O(δτ)3

G(x2; x1, δτ) = 〈x2| e− 1
2 V ′δτe−Kδτe−

1
2 V ′δτ |x1〉 (8)

∫
dx4

∫
dx3 〈x2| e− 1

2 V ′δτ |x4〉 〈x4| e−Kδτ |x3〉 ×

〈x3| e− 1
2 V ′δτ |x1〉 . (9)

The equation 9 in the momentum representation
where K = DP 2, D = ~2/2m:

∫
dP 〈x2|P 〉e−DP 2δτ 〈P |x1〉 e−[V ′(x2)+V ′(x1)]

δτ
2

∫
dPeiP ·x2e−DP 2δτeiP ·x1e−[V ′(x2)+V ′(x1)]

δτ
2

G(x2; x1, δτ) ≈ e−
(x2−x1)2

4Dδτ e−[V ′(x2)+V ′(x1)]
δτ
2

φ (x2, τ2) =
∫

e−
(x2−x1)2

4Dδτ e−[V ′(x2)+V ′(x1)]
δτ
2 φ (x1, τ1) dx

(10)

3. Importance Sampling

To improve the simulation of Eq.2 we introduce
the importance sampling procedure in order to avoid di-
vergences caused by branching rate constant (ET − V ).
In this procedure, one constructs an analytical trial
function,Ψ, based on any available knowledge of Φ0.
Typically, Ψ is generated from standard methods, such
as Hartree-Fock, etc[8]. The trial function is then used
to produce the distribution f(x, τ) ≡ φ(x, τ)Ψ(x) rather
than φ(x, τ). If we multiply the Eq. 2 by Ψ and rewrite
in terms of f(x, τ), we find,

−∂f (x, τ)
∂τ

= D∇2f (x, τ)−D∇ • (f (x, τ)FQ(x))

+ (ET − EL)f (x, τ) (11)

where EL ≡ HΨ/Ψ is the local energy, and FQ ≡
2∇Ψ/Ψ is the quantum force vector. The importance
sampling changes the Green’s function. The branching
part can be obtained by replacing V with EL and the
diffusion part, the ”kinetic energy” operator takes the
form

K ′ = −D∇2 + D(∇ • FQ) + D(FQ • ∇). (12)

III. RESULTS

We have used in this simulation a Variational Monte
Carlo program in order to optimize the trial wave func-
tion parameters. The trial wave function is constituted
by a product of two gaussian and a Pade’s factor in order
to take into account the electron-electron correlation as
follow:

ΨT = e−Z(
PN

i=1 r2
i +
PN

j=1 r2
j )e
PN

i=1
PN

j>i

βrij
1+αrij

where Z, α and β are variational parameters. A Diffu-
sion Monte Carlo was used for obtain the ground state
energy of the quantum dot.
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FIG. 1: Distribution of walkers for 3 particles
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FIG. 2: Distribution of walkers for 4 particles

The figures 1 and 2 show the distribution of replicas
for 3 and 4 particles respectively. Its localization are dis-
played by level surfaces. The figure 3 show the fast con-
vergence of the trial energy for 3 particles and in the fig-
ure 4 we present the ground state energy for 2 ≤ N ≤ 6.
The bigger cross shows the results of ref.[5] for particles
with spin, and the small cross show our results.
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FIG. 3: The fast convergence of DMC for 3 particles
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FIG. 4: Ground state energy comparacion with results of ref
[5] (bigger cross)

IV. CONCLUSIONS

We presented a still incomplete study of the ground
state energy of 2-D charged particles clusters using the
Quantum Monte Carlo Method. Comparison of the val-
ues for energies are complicated by the fact that various
authors use different values for the parameters. We note,
however, that the behavior of the curves are in a good
agreement.
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