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The generalization of the Broad Histogram Method for systems with multiparametric Hamiltoni-
ans enable us to calculate the density of states of a two-dimensional Blume-Capel model in zero field.
The full density of states is calculated as a function of the two spin summations which appear in the
Hamiltonian. This permits any thermodynamics functions to be evaluated for any temperature and
any single site anisotropy with only one computer run. With the density of states one can explore
the entire parameter of space in detail and the region near the tricritical point would be investigated
with more accuracy.
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I. INTRODUCTION

To calculate the density of states for classical spin systems has been a major task of computer simulation in last
years. Several methods have been developed in this sense, like Flat Histogram method[1], Wang-Landau Sampling[2],
and so on. In this work we study the Broad Histogram Method (BHM)[3] and its applicability to the Blume-Capel
model. This method was proposed by Oliveira et al. in 1996 to calculate the density of states directly using a relation
between the density of states for the energy and a quantity that has relation to transition of energy. In that work, the
author paid attention to the number of potential moves for energy transitions, or the number of the possible energy
change, N(E,∆E), for a given microstate X and a fixed ∆E.

The density of states is related to the number of potential moves as

〈N(E,∆E)〉g(E) = 〈N(E + ∆E,−∆E)〉g(E + ∆E), (1)

where 〈N(E,∆E)〉 is a microcanonical average. For the multiparametric case E is a vector in the space of macrostates
with values (E1, E2, ..., En) if we have a Hamiltonian with n parameters. The movements that are realized in the
space of microstates are only allowed if each movement Xold → Xnew is reversible, this means that the movement
Xnew → Xold is also possible. The number N(E,∆E) counts the movements that change the macrostate E to another
E + ∆E. Analogously, N(E + ∆E,−∆E) is the number of movements from E + ∆E to E. This can be seen in Eq.
(1), which has been proven to be exact for any energy spectrum. This equation can be rewritten as

ln g(E + ∆E)− ln g(E) = ln
〈N(E,∆E)〉

〈N(E + ∆E,−∆E)〉 , (2)

since g(E) is a monotonically fast increasing function.
In this work we show preliminary results on the density of states of the two dimensional Blume-Capel model

calculated using the relation (1).

II. THE MODEL

The Blume-Capel (BC) model which was first introduced by Blume[4] is an extension of the spin-1 Ising model.
The Hamiltonian has an additional single-ion anisotropy factor and the model exhibits first order and continuous phase
transitions. The continuous phase transition joins the first order transition at the so-called tricritical point (see
Fig. 1). Its Hamiltonian is

H = −J
∑

〈ij〉
σiσj + D

∑

i

σ2
i , (3)
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where, σi are the spin variables, which are coupled by J , and takes the values −1, 0 and +1, D denotes the single-ion
crystal field anisotropy, and the summation 〈ij〉 is made over nearest-neighbor pairs of spins. Here, we consider the
ferromagnetic case (J > 0).

FIG. 1 shows a schematic phase diagram of the Blume-Capel model. The solid curve is a line of continuous, the
dashed curve of first-order phase transitions. They separate the spin-ordered from the disordered phase, and meet at
the tricritical point.
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FIG. 1: Phase diagram of the Blume-Capel model.

III. SIMULATION PROCEDURE

Since the BHM is not restricted to any specific dynamical rule, we adopted a non-biased random walk
in the space of macrostates to obtain the macroscopic quantities N(E,∆E). The protocol of allowed move-
ments we have chosen was the single spin-flip. Thus, for the BC model we have the allowed ∆E as:
(−8,−1), (−8, 0), (−8, 1), ..., (8,−1), (8, 0), (8, 1). We take a L× L square lattice and rewrite the Hamiltonian as

H = −JE1 + DE2, (4)

where we define each macrostate as E = (E1, E2).
We start our simulation dividing the space of macrostates into windows containing 12 energy levels for E1 and 2

for E2. Beginning inside the first window (E1 = 2L2 and E2 = L2), we flip a spin at random and a new macrostate
is sampled if it is still inside the window. For each value of E2 we sampled all values of E1 and also the levels
E2 ± 1 if it has any connection with the actual performed E1. If the new macrostate is the actual E we store the
numbers N(E,∆E) corresponding to energy jumps performed inside the window. After a certain number of visits
in E we calculate the microcanonical average 〈N(E,∆E)〉 and the energy window is shifted to the not-yet-sampled
lower-energy level and the simulation process continues while E1 ≥ 0. Then we continue from E2 = L2 to E2 = 0.
With the averages 〈N(E,∆E)〉 we calculate g(E) using the Eq. (2). The value of g(E1, E2) may be calculated exactly
for some values of E1 and E2. The exact value used in this work is g(2L2, L2) = 2.

IV. RESULTS

Our estimation of the density of states is shown in FIG. 2 on a 8 × 8 lattice. The region for large E1 and
E2 corresponds to the ordered ferromagnetic phase. The region of small E1 and E2 corresponds to the disordered,
paramagnetic phase. Along the line E2 = L2 the system is effectively spin-1/2 and the density of states is only
non-zero when E1 is divisible by four. In this point the system has the same density of states of the two dimension
Ising model.

This result is in agreement with ref. [5] in which the Blume-Capel model is study by a microcanonical Monte Carlo
simulation.
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FIG. 2: Density of states g(E1, E2) in the Blume-Capel model for a 8× 8 lattice.

V. CONCLUSIONS

We presented a until now incomplete study on the density of states of the Blume-Capel model using the Broad
Histogram Method. The ferromagnetic and paramagnetic regions are both explored and it is these two parts of
the phase space which will contribute to the first-order behaviour. With this density of states any thermodynamic
propertie can be obtained.
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