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I. INTRODUCTION

The generation of new states of quantized systems, ei-
ther for atoms or for trapped and travelling fields, turned
out to be an important topic in the last decade. The
relevance of new states comes from the properties they
may exhibit and their potential applications. Among the
several examples one may cite the number state |n〉 [1],
the coherent state |α〉 [2], the squeezed state |z, α〉 [3, 4],
the phase state |θ〉 [5, 6], the Schrödinger’s cat state [7],
etc. Among various applications one may cite: (i) in
fundamentals of physics, as the study of decoherence ef-
fects affecting field [8] and atomic states [9]; the study of
entangled states and quantum correlations [10]; interfer-
ence in the phase space and oscillations of the statistical
distribution [11]; collapse and reviva l of the atomic in-
version when a two-level atom interacts with convenient
field states [12]; the use of a field state to determine the
properties of another field state [13], etc; (ii) as potential
applications: teletransport [14], quantum computation
[15], quantum communication [16], quantum cryptogra-
phy [17], etc.

One of the most basic state of the quantized electro-
magnetic field is the phase state (PS), playing the role
of complementary of the number state, in the sense that
the number operator N̂ and the phase operator φ̂ consti-
tute a conjugate pair of observables [18]: [φ̂, N̂ ] = i. This
commutation relation was questioned for a long time af-
ter 1963 [19] and the difficulty was then attributed to
the lack of good definitions of a phase state and the cor-
responding (Hermitian) phase operator. So, this placed
the phase in a unique position of being a classical observ-
able having no associated Hermitian operator counter-
part. This situation was not so unconfortable since most
experiments then involved thermal and vacuum fields, for
which the phase is not important. However, the advent
of the laser and the squeezed light has renewed interest
in the problem. Although not being concensual [20], the
problem of the PS (and Hermitian phase operator) has
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been well adressed in 1988, by Pegg and Barnett [5]. It
was denoted as |θm〉 and defined by

|θm〉 =
1√

M + 1

M∑
n=0

einθm |n〉 (1)

with θm = θ0 +
(

2π
M+1

)
m, m = 0, 1, 2, ..., M , and the

corresponding Hermitian phase operator

φ̂θ =
M∑

m=0

θm|θm〉〈θm| (2)

with φ̂θ|θm〉 = θm|θm〉 [5]. In these equations M + 1
stands for a Hilbert space dimension. In this scheme, the
ideal PS will emerge in the limit M →∞. The properties
of this state have been studied in [5, 6, 21], and a scheme
for its generation was proposed in [22].

In this report we will present a distinct strategy to de-
fine the PS. Initially, we concentrate our attention on a
partial phase state( PPS) [6], exhibiting a highly peaked
phase distribution for a convenient choice of involved pa-
rameters. In this scenario an ideal PS emerges also from
a limiting procedure, as in [5, 6], but here the approach is
different: the limit is accomplished upon the parameters
of the state itself, not upon the dimension of a Hilbert
space as implemented in Ref.[5, 6].

This paper is arranged as follows: in the Section II we
characterize our new PPS based on its generation and
study some of its nonclassical properties. The Section
III treats its degree of nonclassicality. In the Sect. IV
we introduce the new PS and the Section V contains the
comments and conclusion.

II. THE PARTIAL PHASE STATE

A. Definition

The general PPS is defined as [6],

|b〉 =
s∑

n=0

bneinθ|n〉 (3)
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where bn is real, positive. Examples of this state are given
in [6]: first, the “rectangular” state |b, r〉 for which the
coefficients bn equal a constant (r−1/2) for q ≤ n < q + r
and vanishes elsewhere. The photon number distribution
is constant and nonzero between |q〉 and |q + r − 1〉 and
is zero outside this interval - hence the name “rectangu-
lar” state. Special cases of this state are the PS (q = 0
and r = s + 1) and the number state |q〉 (r = 1). Sec-
ond, the physical PPS, of which the coherent state is a
particular example. PPS viewed as a nonlinear coherent
state [23] and as hypergeometric state [24] have been also
considered in the literature.

Another example of physical PPS comes from a con-
venient choice of ideal squeezed state |α, z〉, named
phase-squeezed state [4]. An arbitrary ideal squeezed
state is defined as |α, z〉 = D̂(α)Ŝ(z)|0〉 where D̂(α) =
exp(αâ† − α∗â) and Ŝ(z) = exp[(z∗â2 − zâ†2)/2] with
α = Reiθ and z = reiφ. Its expansion in the Fock’s basis,
|α, z〉 =

∑∞
n=0 Cn|n〉, has coeficients [3]

Cn = (2nn!µ)−
1
2

(
ν

µ

)n
2

e−
|β|2
2 + ν∗

2µ β2
Hn

(
β√
2µν

)
(4)

where µ = cosh(r), ν = eiφsinh(r) and β = µα + να∗.
The phase-squeezed state emerges from the choice θ =
(φ+π)/2 as shown in Fig.1. Although never being char-
acterized in the literature as a PPS their phase properties
were studied, based on the Pegg-Barnet formalism [25].

In this section we will identify the phase-squeezed state
as a PPS. To this end we will show how to write the
coefficients Cn of Eq.(4) in the form required by the PPS,
given in Eq.(3). In the phase space, the ideal squeezed
state is represented by an elipse centered at 〈â〉 = α,
having major (minor) axis er (e−r), as shown in Fig.1.
If we set θ = (φ + π)/2 and |α| = R = er, the mentioned
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FIG. 1: Ideal Number (a) and Phase (b) Squeezed States

elipse touches the origin in the phase space and exhibits
reduced phase dispersion as shown in Fig.2.

Now, we define the new PPS, denoted by |R, θ〉, as an
ideal squeezed state obeying the following prescriptions

φ = 2θ − π ,

r = lnR. (5)

Since r > 0 then R is restricted to R > 1. Replacing (5)
in (4) results the coefficients,

Cn =

√
2R

R2 + 1
e
−R2

R2+1√
n!

(
−i

√
R2 − 1

2(R2 + 1)

)n

(6)

× Hn

(
i

√
2R2

R4 − 1

)
einθ,

having the wanted form Cn = bneinθ of the Eq.(3).
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FIG. 2: Pictorial representation of the new PPS in the phase
space.

Fig.2 shows plots of our PPS in the phase space, for
various values of the parameter R. Fig.2a is a window of
Fig.2b displaying an elipse near the origin. Note that the
elipse in the 1st quadrant crosses the 2nd and 4th quad-
rants of the phase space; this is an undesired result, since
the elipse should remain on a single quadrant in order to
characterize a single PPS. Notwithstanding, these unde-
sired intersections tends to zero when R becomes large.

Concerning the generation of this new PPS, now it
turns out immediate: it is obtained from a special class
of squeezed states |α, z〉, that obeying the prescriptions
(5). Generation of arbitrary squeezed states for station-
ary fields in a high-Q cavity has been discussed recently
[26]. For states of travelling fields, there are traditional
schemes [27].

B. Nonclassical Properties

1. Photon Number Distribution

Using the Eq.(6), the photon number distribution for
the PPS, Pn = |Cn|2, results

Pn =
2R

R2 + 1
e
− 2R2

R2+1

2nn!

(
R2 − 1
R2 + 1

)n

(7)

×
∣∣∣∣∣Hn

(
i

√
2R2

R4 − 1

)∣∣∣∣∣

2

.

Note that Pn tends to zero when R increases without
limit. Fig.3 displays plots of Pn versus n, for two values
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of R (and r = ln R). It shows the variation of Pn for
n even (blank) and n odd (shadow). Note that both
envelops tends to the same limit. In other words, the
limit of Pn for n → ∞ lies between the even and odd
envelops, a value determined by the parameter R = |α|.
When R (hence r) increases this limit goes to zero. In
resume, for n À 1, Pn becomes almost constant. The
same becomes true for small values of n when R À 1.
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FIG. 3: Plots of Pn versus n for (a) R = 10; and (b) R = 20.

2. Atomic Inversion

In experiments involving electromagnetic cavities, one
monitors the population of atomic states as function of
time [28]. For the case of a two-level (Rydberg) atom in-
teracting with a (single mode) field, with the whole sys-
tem being previously prepared in a given state, the time
evolution of the atom-field system is described by the
Jaynes-Cummings Hamiltonian [29]. When one assumes
resonance between the field and atom, plus the rotating
wave aproximation [30], this Hamiltonian is written as

Ĥ = ~wâ†â + ~wσ̂z/2 + ~λ(σ̂+â + σ̂−â†) (8)

where â† (â) is the creation (annihilation) operator for
photons; σ̂z = (|e〉〈e| − |g〉〈g|) is the atomic inversion
operator, with |e〉 (|g〉) standing for the atomic excited
(ground) state; σ̂+ (σ̂−) is the raising (lowering) operator
for the atom; w is the field (and atomic) frequency and
λ stands for the atom-field coupling constant.

The atomic inversion is obtained [31] via W (T ) =
〈ΨAF (0)|σ̂z(T )|ΨAF (0)〉, with T = λt. In this expres-
sion |ΨAF (0)〉 stands for the initial state describing the
whole atom-field system. Here we take |ΨAF (0)〉 =
|ΨA(0)〉|ΨF (0)〉 with |ΨA(0)〉 = |e〉 for brevity and
|ΨF (0)〉 as our new PPS. Then we find that: W (T ) =∑∞

n=0 Pncos(2T
√

n + 1), with Pn given in Eq.(7).
Fig.4 shows the atomic inversion as function of time

T = λt, for (a) R = 1, and (b) R = 10. We note that
this quantity exhibits no collapse and revival effect and
its amplitude of oscillations tends to zero when R be-
comes large, an expected result when the phase of a state
becomes improved [32].
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FIG. 4: Plots of atomic inversion W versus time T = λt.

3. Quasi-Distributions

Using the characteristic function χ(η) for a pure state
|Ψ〉, χ(η) = 〈Ψ|D̂(η)|Ψ〉, we obtain a general class of
quasi-distributions [33, 34], written as

F (ζ; w) =
1
π2

∫

all

e−
w
2 |η|2+η∗ζ−ηζ∗χ(η)d2η. (9)

For w = 0, F (ζ; 0) furnishes the Wigner distribution,
while w = 1 yields the Husimi Q representation, Q =
F (ζ; 1). For our PPS the Eq.(8) results, with ζ = x + iy,

F (x, y; w) =

(
b2 − 4|c|2)

−1
2

π
exp

(
2Re(a2c)b|a|2

b2 − 4|c|2
)

(10)

where a = Re−iθ−x+ iy, b = [(R2 +1)/2R]2 +(w−1)/2
and c = e2iθ(R4 − 1)/8R2. The greatest value of this
function occurs at x = Rcos(θ) and y = Rsin(θ) when
a = 0. Then the Eq.(9) gives

Fmax(x, y; w) =
(
π
√

b2 − 4|c|2
)−1

, (11)

yelding Wmax = 2/π for w = 0. For w = 1, we obtain
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FIG. 5: Plots of Wigner function, for (a) R = 1; (b) R = 2
and (c) R = 5.

Qmax = 2R/[π(R2 + 1)] and this expression goes to 0
when R grows. From the prescription (5) R = 1 implies
r = 0, concerned with a coherent state. In this case
Qmax = 1/π, as it should [33]. This Q-function will be
useful in the Sec.III. Fig.(5) displays the Wigner function
for R = 1 (a); R = 2 (b) and R = 5 (c). As wanted, it
shows the phase definition of our PPS being improved
when R (and r) grows.
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4. Phase Distribution

There are various theoretical approaches describing
the phase observable. Some of them are motivated by
the aim of expressing the phase as the complement of
the photon number, in the spirit of Dirac’s original work
[35]. Although these approaches are quite distinct, they
all lead to the same phase probability distribution for a
field in state |Ψ〉 as a function of phase angle Θ [36]:

P (Θ) =
1
2π

∣∣∣∣∣
∞∑

n=0

〈n|Ψ〉e−inΘ

∣∣∣∣∣

2

. (12)

Replacing in (12) the Cn = 〈n|Ψ〉 given in (6) we find
the phase distribution for our PPS,

P (Θ) =
1
π

Re
−2R2

R2+1

R2 + 1

∣∣∣∣∣∣

∞∑
n=0

(
−i

√
R2 − 1

2(R2 + 1)

)n

(13)

× Hn

(
i

√
2R2

R4 − 1

)
ein(θ−Θ)

√
n!

∣∣∣∣∣

2

.

Fig.(6) shows plots of P (Θ) for θ = π/2. Note that the
distributions are very concentrated and simetric around
Θ = π/2 and, when R grows, P (Θ) becomes more con-
centrated until reaching a Dirac distribution δ(θ − Θ).
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FIG. 6: P (Θ) versus x = Θ near Θ = π/2 for R = 10 (cross),
R = 15 (normal), R = 20 (circle) and R = 25 (hard).

This reminds us of the Pegg-Barnett truncated PS reach-
ing the Pegg-Barnett PS when the dimension of a Hilbert
space grows [5].

III. NONCLASSICAL DEPTH OF THE NEW
PPS

A pertinent question in quantum optics is: “given two
states exhibiting distinct nonclassical effects, which of
them is more nonclassical than the other ? ” . This
question has been addressed by many authors in the lit-
erature [37]. More recently [38], inspired on [39], the is-
sue has been considered analysing both phase-space and

distance-type measures of nonclassicality. In [38] the cri-
terium to quantify the nonclassical depht of a state |Ψ〉 is
taken as the minimum of distance of this state and that of
the nearest classical (coherent) state. A straighforward
procedure using this concept leads to the operational for-
mula,

dm(Ψ) = 1− πQmax(Ψ) (14)

where dm(Ψ) stands for the mentioned minimum distance
(nonclassical depth) and Qmax(Ψ) stands for maximum
of Q-Husimi function. For our PPS the Eq.(13) results

dm =
(R− 1)2

R2 + 1
. (15)

Remembering that R ∈ [1,∞), the Eq.(14) yields dm → 0
(most classical) if R → 1, whereas dm → 1 (most non-
classical) if R → ∞. These results can also be obtained
via the Lee criterium since it works for Gaussian states.
These results give us a route to achieve a new PS, as
considered in the following section.

IV. THE PPS AS A GUIDE TO A NEW PS

All previous considerations stand as a support justify-
ing the introduction of a new PS. In the present scenario
it emerges naturally, as the limit of our PPS,

|θ〉 = lim
R→∞

|R, θ〉. (16)

These states are (Dirac) delta-orthonormalized: 〈θ|θ′〉 =
δ(θ

′ − θ ). To show this we take

〈θ|θ′〉 = lim
R,R′→∞

〈R, θ|R′
, θ
′〉 = lim

R,R′→∞

∞∑
n=0

C∗nC
′
n, (17)

where
∑∞

n=0 |n〉〈n| = 1̂ has been used and Cn are given
in Eq.(6). Next, using the Mehler identity [40]

∞∑
n=0

znHn(x)Hn(y)
n!2n(1− z2)−1/2

= exp

(
2xyz − (x2 + y2)z2

1− z2

)

(18)
we obtain

〈R, θ|R′, θ′〉 =
f(R)f(R′)√

1− z2
exp

(
2xyz − (x2 + y2)z2

1− z2

)
.

(19)
where x = i

√
2R2/(R4 − 1), y = −i

√
2R′2/(R′2 − 1),

z =
√

(R2 − 1)(R′2 − 1)/[(R2 + 1)(R′2 + 1)]exp[i(θ−θ′)]
and f(R) =

√
2R/(R2 + 1)e−R2/(R2+1). Pursuing fur-

ther this line and neglecting higher order terms (1/R2,
1/R′2, etc) in comparison with 1/R and 1/R′ we obtain
from Eq.(18): 〈θ|θ′〉 = δ(θ− θ′), for (θ− θ′) ∈ (−π,+π)
[41].
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Finally, and inspired on [5], the corresponding phase
operator Φ̂ is defined in terms of a suitable PS basis, as
follows,

Φ̂ =
∫ 2π

0

θ|θ〉〈θ|dθ (20)

yielding the eigenvalue equation,

Φ̂|θ〉 = θ|θ〉. (21)

It is worth stressing that in the present context the oper-
ator Φ̂ in Eqs.(20), (21) make sense only when applying
the limit R →∞ (as used in Eq. (17) ), this limit taken
after all calculations of expectation values and similar
c-numbers. This is a feature in common with the Pegg-
Barnett approach [5] and seems to be inevitable.

V. COMMENTS AND CONCLUSION

In this report we have considered the properties and
engineering of new states of the quantized electromag-
netic field. In this scenario we have focused the class of
PPS (Sect.II), studing a new kind of such state, some of
its representative properties (Sect.III) and its nonclassi-
cal depth (Sec.IV). As a natural consequence, the results
found in the Sects. II and III support the introduction of
a new kind of PS: it emerges from a suitable limit of the

new PPS for R (hence r) → ∞. Contrary to the strat-
egy used in [5, 6], where the limiting process is taken on
the Hilbert space dimension, N → ∞, here the limit is
implemented upon the arrangement of a coherent state
(|α| = R → large) plus a radial and strong squeezing in
the phase space, all obeying the prescription in Eq.(5)
to avoid appearance of spurious bifurcations in the phase
space, as found in [41]. Of course, reaching the limit R
(hence r)→∞ is impossible experimentally, since this re-
quires infinite energy [42]. So, our PS defined in Eq.(15)
is an ideal state - in the same way as, e.g., a plane wave
describing a state having well defined momentum, also
corresponds to an ideal state.

As final remarks, we mention previous works involv-
ing a phase state [43]. The present PS has some analo-
gies with those of [43], but there is a crucial distinction:
the use of our Eq.(5), which realizes the idea by Vogel-
Schleich [43]- that a ’true’ PS should correspond to a ray
starting from the origin of the phase space. Further in-
vestigations on the properties of these new PPS and PS,
their comparison with those found in [5,6], are in progress
and will be considered in a future work.
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