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I. INTRODUCTION

Considerable theoretical and experimental efforts have
been devoted to the preparation and characterization
of nonclassical states of the electromagnetic field, such
as sub-Poissonian [1], squeezed [2], entangled [3] and
“Schrödinger-cat” states [4]. According to a theorem by
Hillery [5], all states which are not coherent are non clas-
sical and, according to a criterion by Lee [6], the number
states exhibit maximum nonclassical depth, hence stand-
ing as the most non classical states. Now, although they
play the role of a “battle-horse” in the formalism of quan-
tum theory, their preparation in laboratories is difficult:
in spite of various proposals for their generation [7], till
now only number states having small numbers (N = 1,
2) have been prepared in laboratories [8]. Recently, an
elegant proposal for generation of large number states
(N ∼ 6) was presented [9], the scheme standing for fields
trapped inside a high-Q cavity-QED. Other important
works concerning this topic are found in [10].

Many of the earlier proposals cited in [7] employ super-
positions of circular coherent states for generating num-
ber states. Recently, we have shown that highly ex-
cited Fock states of the kind |2N 〉 (and some of their
simple superpositions) can be obtained from specific su-
perpositions of circular coherent states [11, 12]. In
the present work, we consider superpositions of circular
squeezed states (SCSS) which lead to the generation of a
broader class of number states. We show that such states
may result in a number state, of the type

∣∣k2N
〉
, with

k = 1, 2, 3, ... and N = 2, 3, 4, ..., for convenient choices of
the involved parameters. We will consider the construc-
tion of these states in two distinct schemes, one of them
being concerned with states of stationary fields inside a
microwave cavity, in which N stands for the number of
atoms rotating the squeezed states in phase space when
those atoms cross the cavity; the other scheme refers to
traveling fields, where N stands for the number of appa-
ratus rotating the circular squeezed states. Both schemes
are inspired on others existing in the literature, used for
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other proposals.
This paper is arranged as follows. In Section II we

study the preparation of the SCSS for stationary fields
and in Section III we do the same for traveling fields. As
we will see below the SCSS furnishes our wanted family
of number states as a by-product. In the Section IV we
show how to obtain highly excited number states with
good fidelity, of the family

∣∣k2N
〉
, by sculpturing [13]

a convenient initial state. The Section V contains the
comments and conclusion.

II. PRODUCTION OF SCSS FOR STATIONARY
FIELDS

To produce a SCSS as a stationary field inside a mi-
crowave cavity we start from a single-mode squeezed
state initially prepared in it. (A recent proposal prepar-
ing such an initial state was presented in [14].) The
present scheme relies on selective atomic detection of
an entangled state-vector describing the whole atom-field
system. The procedure is inspired on others appearing
previously in the literature [15, 16]. The method employs
a high-Q superconducting cavity C, placed between two
low-Q cavities (Ramsey zones R1 and R2), as schemati-
cally shown in Fig. 1.
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FIG. 1: Schematical illustration of the experimental setup
for production of SCSS in a high-Q cavity using dispersive
atomic probes. SA and MG stand for “source of atoms” and
“microwave generator”, respectively; De (Dg) is a selective
detector for state |e〉 (|g〉).

Highly excited (Rydberg) atoms are prepared in circu-
lar state |e〉 (principal quantum number n = 51 in the
case of rubidium) via an appropriate laser beam. These
atoms are sent, one by one, throughout the system as
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shown in Fig.1. In the Ramsey zones, classical fields pro-
duced by a MG interact resonantly with the transition
between |e〉 and |g〉 (n = 50) leading to the atomic state
|e〉 → |e〉 + |g〉 and |g〉 → |g〉 − |e〉. A third (auxiliary)
atomic level |i〉 (n = 52) is crucial in the scheme [17]:
the cavity frequency is adjusted close to resonance (de-
tuned by small δ) with the transition |e〉 −→ |i〉, but far
from the transition |g〉 −→ |e〉. The number of photons
in the field being denied to change, only the phase may
vary. So, concerning with the transition |g〉 ←→ |e〉 the
atom-field interaction in C is dispersive, instead of res-
onant. Such an interaction is described by the effective
atom-field Hamiltonian [17, 18]

Ĥint = ~ωeff â†â(|i〉 〈i| − |e〉 〈e|), (1)

with ωeff = 2d2/δ, d being the atomic dipole moment.

Thus the atom crossing the cavity produces a phase-shift
in the field state when it is in the excited state |e〉, but no
phase-shift occurs when the atom is in the ground state
|g〉.

Consider that the field in the high-Q cavity is ini-
tially in a squeezed state |α, z〉 = D̂(α)Ŝ(z)|0〉, where
D̂(α) = eαâ†−α∗â and Ŝ(z) = e

1
2 z∗â2− 1

2 zâ†2 are the (uni-
tary) displacement and squeeze operators, respectively,
with α and z standing for the corresponding displace-
ment and squeeze parameters [19]. The evolution of the
entangled atom-field state, as the first atom crosses the
system, follows the steps presented in Table 1 below (up
to normalizations and using eiφâ†â|α, z〉 = |eiφα, e2iφz〉
[20]).

TABLE 1. Evolution of the atom-field state during the passage of the first atom throughout the system.

1st atom |Ψ〉atom+field

before R1: |e〉1|α, z〉
after R1: (|g〉1 + |e〉1)|α, z〉
after C: |g〉1|α, z〉+ |e〉1|eiθ1α, e2iθ1z〉
after R2: |g〉1(|eiθ1α, e2iθ1z〉+ |α, z〉) + |e〉1(|eiθ1α, e2iθ1z〉 − |α, z〉)

In table 1 subscript 1 refers to the first atom and θ1 =
ωefft1, t1 being the time the atom takes to cross the
cavity. Now, if this first atom is detected in the state |g〉
(|e〉), the field in the cavity is projected onto the state
|eiθ1α, e2iθ1z〉 + |α, z〉, ( |eiθ1α, e2iθ1z〉 − |α, z〉,). For the
present purpose we take the detection being that of the

ground state |g〉.

If a second atom is ejected after the detection of
the first one in |g〉 (the field state in the cavity being
|eiθ1α, e2iθ1z〉 + |α, z〉 ), the whole atom-field state now
evolves as shown in Table 2.

TABLE 2. Same as in Table 1, for the second atom.

2nd atom |Ψ〉atom+field

before R1: |e〉2
(|eiθ1α, e2iθ1z〉+ |α, z〉)

after R1: (|g〉2 + |e〉2)
(|eiθ1α, e2iθ1z〉+ |α, z〉)

after C: |g〉2
(|eiθ1α, e2iθ1z〉+ |α, z〉) + |e〉2

(|ei(θ1+θ2)α, e2i(θ1+θ2)z〉+ |eiθ2α, e2iθ2z〉)

after R2: |g〉2
(|eiθ1α, e2iθ1z〉+ |α, z〉+ |ei(θ1+θ2)α, e2i(θ1+θ2)z〉+ |eiθ2α, e2iθ2z〉) + |e〉2

(−|eiθ1α, e2iθ1z〉
| −|α, z〉+ |ei(θ1+θ2)α, e2i(θ1+θ2)z〉+ |eiθ2α, e2iθ2z〉)

We see that detecting the second atom again in |g〉
leads to a superposition of the state |eiθ1α, e2iθ1z〉+|α, z〉
with its rotated (by θ2) partner |ei(θ1+θ2)α, e2i(θ1+θ2)z〉+
|eiθ2α, e2iθ2z〉. Pursing further in this way, after the pas-
sage of N atoms throughout the system, controlling their

velocities such that θ1 = θ, θ2 = θ/2, . . ., θN = θ/2N−1

and all atoms being detected in the state |g〉, the state
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generated in the cavity results

|ΨN (α, z, θ)〉 = NN

JN∑

j=0

(|eiθαj , e
2iθzj〉+ |αj , zj〉

)
, (2)

where αj = α exp(iθj/2N−1), zj = z exp(iθj/2N−2) and

JN = 2N−1 − 1. In the foregoing procedure the final
field-state produced by detection of the (j − 1)-th atom
stands for the initial field-state in the cavity when the
j-th atom is released. The normalization factor NN is
given by

|NN (α, z, θ)|−2 = exp
[−α2ez sech(z)

]
sech(z)AN (α, z, θ), (3)

where

AN (α, z, θ) =
JN∑

j,j′=0





2√
1− tanh2(z) exp(2iΘjj′)

exp
[
α2e2z sech2(z) exp(iΘjj′)
1 + tanh(z) exp(iΘjj′)

]

+
1√

1− tanh2(z) exp [2i(Θjj′ + θ)]
exp

[
α2e2z sech2(z) exp [i(Θjj′ + θ)]
1 + tanh(z) exp [i(Θjj′ + θ)]

]

+
1√

1− tanh2(z) exp [2i(Θjj′ − θ)]
exp

[
α2e2z sech2(z) exp [i(Θjj′ − θ)]
1 + tanh(z) exp [i(Θjj′ − θ)]

]

 , (4)

with Θjj′ = θ(j − j′)/2N−1.
The squeezed states participating of the superposed

state (2) can be represented by equally separated ellipses
over a circle of radius |α| in the complex plane, ranging
in the interval

[
θ0, θ0 + 2θ(1− 2−N )

]
where θ0 = arg(α),

as illustrated in Fig. 2 taking θ0 = 0 and θ = π. Without
loss of generality we take α and z to be real and positive
from now on. Finally, the state |ΨN (α, θ, z)〉 given in
Eq.(2) constitutes our (auxiliary) SCSS.

  (a)                                      (b)                                      (c)                                     (d)

FIG. 2: Pictorial representation of 3rd-order sequence leading
to |ΨN 〉, with N = 3, in the phase-space: (a) |Ψ0〉, (b) |Ψ1〉,
(c) |Ψ2〉 and (d) |Ψ3〉; |Ψ0〉 = |α, z〉 = D(α)S(z)|0〉.

III. PRODUCTION OF SCSS FOR TRAVELING
FIELDS

The superposition state (2) can also be produced as
running waves of the electromagnetic field. In this sense
the generation scheme is complementary to the previ-
ous one, while constituting a mapping, step by step, of
one onto another. It consists of a set of Mach-Zehnder
interferometers (MZI), all them fed with a Fock state

|1〉 and the vacuum in the internal modes (b and c re-
spectively). Each of the MZI contains a Kerr-medium
in one of the arms that couples the internal b-mode to
an external mode (a), which is initially prepared in a
squeezed state |α, z〉 [21]. The experimental setup is il-
lustrated in Fig. 3: (A) shows details of the first MZI
including a Kerr-media, a device proposed to generate
optical Schrödinger cat states [22], which has recently
proved to permit the generation of superpositions of two
squeezed states in running modes [23]; in (B) one presents
pictorially the sequence of MZI which can also be used
to to generate superpositions of circular coherent states
[11, 12].

Initially a single photon (mode b) and vacuum state
(mode c) enter in the first ideal 50/50 symmetric beam
splitter (BS) of the MZI. The action of BS1 is described,
in terms of the annihilation operators b̂ and ĉ for modes
b and c, by the unitary operator [24]

R̂bc = exp
[
i
π

4
(b̂†ĉ + b̂ĉ†)

]
. (5)

Just after the BS1 the (unnormalized) state of the system
is given by (|1〉b|0〉c+i|0〉b|1〉c)|α, z〉a, where |α, z〉a is the
initial squeezed state, previously prepared in a running
wave [21] in the mode a. The dispersive Kerr interaction
between a- and b-modes is described by the interaction
Hamiltonian [25]

ĤK = ~Kâ†âb̂†b̂, (6)

where K is proportional to the third order nonlinear sus-
ceptibility of the medium. Therefore the action of the
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FIG. 3: Schematical illustration of the setup producing the
SCSS as running modes; (A) shows details of the first MZI
including the nonlinear Kerr-medium, while (B) depicts the
sequence of MZI plus associated Kerr-media.

Kerr-medium is represented by the unitary operator

ÛK = exp(−iθâ†âb̂†b̂) (7)

where θ = Kl/v, l being the length of the Kerr-medium
and v the velocity of light in the medium. So, af-
ter the medium and just before the second beam split-
ter BS2, the (unnormalized) state of the system reads
|1〉b|0〉c|αe−iθ, ze−i2θ〉a + i|0〉b|1〉c|α, z〉a. The second
beam splitter implements the transformation

|1〉b|0〉c → (|1〉b|0〉c + i|0〉b|1〉c)/
√

2 , (8)

|0〉b|1〉c → (|0〉b|1〉c + i|1〉b|0〉c)/
√

2 . (9)

Thus, after BS2 the entangled state of the system is

|Ψ〉AF =
1
2

[|1〉b|0〉c(|e−iθα, e−2iθz〉a − |α, z〉a)

+i|0〉b|1〉c(|e−iθα, e−2iθz〉a + |α, z〉a)
]
.(10)

If detector D1 (D2) fires signaling the detection of the
state |1〉b|0〉c (|0〉b|1〉c), the a-mode is projected onto the
state |e−iθα, e−2iθz〉a−|α, z〉a ( |e−iθα, e−2iθz〉a+|α, z〉a);
so, taking the internal photon detected in D2 (mode c),
the state projected in mode a is |Ψ1(α,−θ, z)〉 [22].

Next, assume that a second MZI is aligned with the
first one, again with a single photon in mode b and
the vacuum in mode c, but with mode a in the state
|e−iθα, e−2iθz〉a + |α, z〉a, the outcome of the first MZI.
If the second Kerr-medium is adjusted such that θ = θ2,
then the field-field entangled state in the second appara-
tus evolves as in Table 2 with |e〉2 (|g〉2) replaced by
|1〉b|0〉c ( i|0〉b|1〉c) and θ1 (θ2) being changed to −θ1

(−θ2). Going further ahead, we consider a sequence of N
MZI [26]; taking θj = θ/2j−1 and assuming that all pho-
tons are detected by D2 (corresponding to the detection
of the state |0〉b|1〉c), the outcome in mode a will be the
state |ΨN (α,−θ, z)〉. Notice that |ΨN (α, θ + 2π, z)〉 =
|ΨN (α, θ, z)〉 so that these states coincide with the sym-
metrical superposition for the cases θ = ±π.

The schemes for generating SCSS for trapped fields in-
side a cavity and for running fields can be mapped one
onto another as alluded before. The beam-splitters in the
second scheme play the role of the Ramsey zones in the
first one whereas the atom-field interaction in the first
scheme is translated to the field-field interaction engen-
dered by the Kerr-medium used in the second one. Fur-
thermore, the ionization detection of the atomic state |g〉
is equivalent to the photon register in the detector D2
and, naturally, the number of atoms crossing the cavity-
system corresponds to the number of aligned MZ appa-
ratus of the second scheme, since both correspond to the
recursive procedure rotating squeezed states around a cir-
cle in the phase space.

IV. GETTING NUMBER STATES FROM THE
SCSS

The photon-number distribution (PND) of the SCSS,
PN (n;α, z, θ) = |〈n|ΨN (α, z, θ)〉|2, is given by

PN (n;α, z, θ) =
1

AN (α, z, θ)
(tanh z)n

2n n!
H2

n

(
αez

√
sinh(2z)

)
2 sin2(nθ)

1− cos(nθ/2N−1)
, (11)

where Hn(x) are the Hermite polynomials. The last
factor in the above expression (which carries the θ-
dependence of PN (n; α, z, θ)) vanishes for many values

of n whenever θ is a rational fraction of π. This feature
is maximized if one takes θ = π and, in this case, the only
occupied number states are those for which n is a multi-
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ple of 2N . Actually, in the limit θ → π, the last factor in
(11) reduces to 22Nδn,k2N , where k = 0, 1, 2, . . . ; in other
words, |ΨN (α, z, π)〉 is a superposition containing solely
number states of the kind |k2N 〉. As it is shown below,
depending on the appropriated choices of the parameters
α and z, such state becomes a single number state |k2N 〉

with a very high fidelity.
To investigate whether a SCSS corresponds to a num-

ber state of the type |k2N 〉 one should analyze the fidelity
between the states |k2N 〉 and |ΨN (α, z, π)〉, which we de-
note by F . This quantity is obtained from Eq. (11) by
taking θ = π and n = k2N :

F (|ΨN (α, z, π)〉, |k2N 〉) =
22N

AN (α, z, π)
(tanh z)k2N

2k2N (k2N )!
H2

k2N

(
αez

√
sinh(2z)

)
. (12)

As a general procedure, for fixed values of N and k, one
should search for the values of α and z which maximize
the fidelity (12); as closer the maximum value of this
fidelity is to 1, as better |ΨN (α, z, π)〉 approximates the
number state |k2N 〉. The behavior of F as a function of
α and z is presented in Fig.4 for a specific choice of N
and k.
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FIG. 4: Fidelity between the state |Ψ(α, z, π)〉 and the states
|k2N 〉, as function z, for some values of α: 3.0 (dotted line);
4.0 (full line), 5.0 (dashed line).

A simple way to illustrate the generation of the desired
number states of the type

∣∣k2N
〉

consists in plotting the
PND of the state |ΨN (α, z, π)〉, after choosing convenient
values of the parameters α and z, and making N run from
1 to 2,3,4,...; this is presented in Figs.5-7 for some cases.
The process works as if the atoms sculpture the initial
field state |Ψ0〉 = |α, z〉, leading it to a final number
state. The name sculpture relies on the action of atoms
removing components of the initial state until achieving
the final state, as we see in Figs.5-7.

Fig. 5 corresponds to the member |4〉 of the family of
number states

∣∣k2N
〉

for k = 1, N = 2. Fig. 6 stands for
the number state |24〉, for k = 3, N = 3 and Fig. 7 is for
the number state |48〉, for k = 3, N = 4.
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FIG. 5: Plots of PND of SCSS as function of n for α = 2.0, z =
0.6, showing the sculpture of the initial state |α, z〉 yielding
the number state |4〉; it coincides with

ŕŕk2N
ő

for k = 1, N = 2.

V. COMMENTS AND CONCLUSION

We have presented proposals preparing a single-mode
of the electromagnetic field in highly excited number
states of the type

∣∣k2N
〉
. One of these schemes stands for

stationary waves (Fig.1), the other standing for traveling
waves (Fig.3). The strategy has consisted in preparing
the SCSS for each case, the number states of the family∣∣k2N

〉
emerging from the SCSS by firstly choosing con-

venient values of the parameters α, z characterizing the
initial squeezed state |Ψ0〉 = |α, z〉 and next rotating it N
times around a circle in the phase space. For stationary
fields N refers to number of atoms crossing the microwave
cavity; for traveling fields N refers to the number of MZI
(plus Kerr-medium) composing the whole apparatus. As
result, the sculpture using 2 atoms furnishes only the
state |4〉, with fidelity F = 99.1% and success probabil-
ity PN = 1/2N = 1/4 for N=2 (Fig.5). However, the
sculpture using 3 atoms (Fig.6) furnishes various number
states (not shown in figures, exception to |24〉 shown in
Fig.6), such as: |8〉, for α = 3.0 and z = 0.4, with F =
99.9% ; |16〉, for α = 4.0 and z = 0.6, with F = 99.3%;
|24〉, with F = 98.0%; and also the states |32〉 and |40〉,
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FIG. 6: Same as Fig.(4) for α = 5.0 and z = 0.9, yielding the
number state |24〉; it coincides with

ŕŕk2N
ő

for k = 3, N = 3.
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FIG. 7: Same as Fig.(4), for α = 7.2, z = 0.7, leading to the
state |48〉; it coincides with

ŕŕk2N
ő

for k = 3, N = 4.

both having fidelity near 97%. All these number states
have same success probability, P3= 1/23 = 1/8. When
the sculpture is implemented using 4 atoms we obtain
the number states: |16〉, |32〉, |48〉 (see Fig.7), |64〉, |80〉,
|96〉 and |112〉, all having fidelity greater than 99.9% and
same success probability: P4= 1/24 = 1/16.

Here we have assumed all atomic and field detectors as
ideal. Recent technological advances yield photodetector
efficiency near 100% [27]; till now, atomic detectors are
not so good as photodetectors, the best efficiency being
near 70% [28]. The use of non-ideal detectors usually
causes deleterious influence upon the state being pre-
pared, by reducing its fidelity. On the other hand both
schemes depend on experimental improvements: highly
excited stationary fields in number states |n〉, inside a
cavity, are strongly affected by decoherence effects de-
grading the state being prepared. Accordingly [29], the
decoherence time is τd ' τcav/N , τcav being the time
spent by an atom to cross the cavity, showing τd dimin-
ishing when N grows. For traveling fields the decoherence
effect is not so crucial, but another difficulty emerges, as
how finding synchronized sources of single photons. We
hope that these difficulties could be circumvented in near
future by technological advances.

As final remark it is worth emphasizing that highly
excited number states, for both stationary and traveling
fields, can also be obtained in a second scenario, starting
from an initial coherent state [11]. From a practical view
point this is advantageous since preparation of squeezed
states requires one step beyond the preparation of co-
herent states. From a theoretical view point the case of
coherent state is just particularization of the present ap-
proach by setting z = 0 in the initial state describing
the atom-field system, namely: |Ψ〉AF = |e〉|α, z〉 going
to |Ψ〉AF = |e〉|α〉. However, the results obtained for
squeezed states are better than those found for coherent
states. For example, when two atoms cross the cavity one
finds |n〉SS = |4〉 while no number state |n〉CS is found
[subscripts SS(CS) stands for squeezed(coherent) state].
Also, for N atoms crossing the cavity, using an initial
SS furnishes the family of number states |n〉SS = |k2N 〉
while using an initial CS only furnishes the number state
|n〉CS = |2N 〉. In addition, for each (convenient) value
of α and a number of atoms, one obtains NSS greater
than NCS . The possibility of getting superpositions of
two highly excited number states from SCSS will be an-
alyzed elsewhere.
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