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The present two-part review aims to put the different phenomena that have been called ‘‘beta diversity’’ over the years
into a common conceptual framework and to explain what each of them measures. The first part (Tuomisto 2010)
discussed basic definitions of ‘‘beta diversity’’. Each arises from a different way of combining a definition of ‘‘diversity’’
with a definition of its alpha component and with a mathematical relationship between the alpha and gamma
components. This second part assumes that an appropriate basic definition of a beta component (which may or may not
be true beta diversity) has been chosen, and the focus here will be on how to quantify it for a given dataset. About twenty
different approaches have been used for this purpose. It turns out that only two of these approaches accurately quantify
the selected beta component: one does so for the entire dataset, and the other for two sampling units at a time. The other
approaches actually quantify other phenomena, such as mean species turnover between sampling units, compositional
gradient length (with or without reference to an external gradient), distinctness of a focal sampling unit, rate of species
accumulation with increasing sampling effort, rate of compositional turnover along an external gradient, or the rate of
decay in compositional similarity with increasing geographical distance. Although most of these phenomena can be
expressed as a function of a beta component of diversity, they do not equal a beta component of diversity. Many of these
derived variables are not even numerically correlated with the beta component on which they are based, which needs to be
taken into account when interpreting the results. The effects of sampling decisions when results are extrapolated beyond
the available data will also be discussed.

The first part of the present review (Tuomisto 2010)
discussed eight different basic definitions of ‘‘beta diversity’’.
This second part discusses derived definitions of ‘‘beta
diversity’’ that arise from different approaches to quantifying
the chosen kind of ‘‘beta diversity’’, or a phenomenon related
to it, for a given dataset. The focus in this part is mostly on
five of the eight basic definitions of ‘‘beta diversity’’,
collectively referred to here as beta components. Table 1
presents an overview of both the basic and the derived
definitions of ‘‘beta diversity’’ and indicates in which part of
the present review each definition is explained in detail.

Two of the beta components treated in this paper
measure compositional heterogeneity in the dataset. True beta
diversity (qDb�

qDg/
qDa or qbMd�g/ad) quantifies the

number of compositional units (compositionally distinct
virtual sampling units that have the same species diversity as
the actual sampling units do on average, abbreviated CU) in
the dataset. Regional-to-local diversity ratio (qDg=ḡj �
qDg=

qD̄gj or qbMt�g=at) quantifies how many times as
rich in effective species the entire dataset is than a single
compositional unit. The two differ in measurement units
but obtain the same numerical value when based on the
same data; when both are referred to simultaneously, the
notation qbM is used. The other three beta components

measure effective species turnover. Absolute effective species
turnover (qbAt�g�at) quantifies the cumulative number
of effective species that change among all compositional
units in the dataset. Relative effective species turnover is
obtained by dividing qbAt by either at or g. Whittaker’s
effective species turnover (qbMt�1�

qbAt/at) quantifies the
number of times that the effective species composition
changes completely among all compositional units. Propor-
tional effective species turnover (qbPt�

qbAt/g) quantifies
what proportion of the effective species composition of
the entire dataset changes among the compositional units.
Effective species turnover can be thought of as change in
effective community composition, so all three turnover
measures are collectively referred to by Dc.

True gamma diversity qDg�g is the number of effective
species in a dataset, quantified as the inverse of the mean of
the proportional abundances of the actual species. The
parameter q defines which kind of mean is used, and in
practice controls to what degree the rarest species are taken
into account (see The starting point: what is diversity? in
Tuomisto 2010). When q�0, even the rarest of the S actual
species are counted as one effective species, so species
diversity equals species richness. When q�1, diversity equals
the exponential of the Shannon entropy, and when q�2, the
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Table 1. Summary of the notation and names used for different kinds of ‘‘beta diversity’’ in the present paper. The first five are basic
definitions in which true gamma diversity (g�qDg) of the dataset of interest is partitioned into alpha and beta components using a
simple mathematical function. The others are derived definitions, the notation for each of which summarises its relationship to the
basic definitions, other components of diversity, and explanatory gradients (‘‘n.n.’’ means no specific notation). The alpha component is
either mean gamma diversity within sampling units at (�q D̄gj ); whose measurement unit is spE, or true alpha diversity ad (� qDa), whose
value is the same but measurement unit is (effective species)/(compositional unit)�spE/CU. When either all N sampling units are weighted
equally or q�1, at is constrained to the interval [g/N, g]. This allows expressing also the range of each beta component in terms of N; these
ranges are shown together with the measurement units. The last column indicates in which subsection of the present two-part review each
kind of ‘‘beta diversity’’ is discussed in detail. Part 1 refers to Tuomisto (2010) and Part 2 to the present paper.

Notation Definition Measurement unit [range] Section

bMd true beta diversity�g/ad CU [1 CU to N CU] Part 1: 1

bMt regional-to-local diversity ratio�g/at spE/spE [1 to N] Part 1: 1

bAt absolute effective species turnover�g�at spE [0 to (N�1)at] Part 1: 2

bMt�1 Whittaker’s effective species turnover�(g�at)/at�
g/at�1

spE/spE [0 to N�1] Part 1: 3

bPt proportional effective species turnover�(g�at)/g�
1�at/g

spE/spE [0 to 1�1/N] Part 1: 4

Dc any of the effective species turnover measures, i.e.
bAt, bMt�1 or bPt

as in the chosen turnover Part 2:
Introduction

bMtot or Dctot a beta component quantified for the entire dataset as in the chosen beta component Part 2: 1.1

bMj,k or Dcj,k a beta component quantified for a subset of the
dataset that consists of the sampling units j and k

as in the chosen beta component Part 2: 1.2

¯̄¯̄D̄cj,k average of all the species turnover values that can be
calculated for different sampling unit pairs in the
dataset (with j"k)

as in the chosen turnover Part 2: 2.1

¯̄¯̄D̄cj,centr average of all the species turnover values that can be
calculated between a real sampling unit and a regional
compositional centroid in the dataset

as in the chosen turnover Part 2: 2.2

Dcj,kmax or Dc ?max compositional gradient length in the dataset along the
compositional dimension with most turnover

as in the chosen turnover Part 2: 2.3

Dc(Dg) compositional gradient length along a specified section
of an external gradient g

as in the chosen turnover Part 2: 2.4

DDg(Dlog(1�Dc)) number of half-change units, i.e. observed amount of
change in differences in explanatory gradient g
expressed in terms of decrease in compositional
similarity

(unit of g)/(unit of g) Part 2: 2.5

¯̄¯̄D̄cj,F compositional distinctness of the focal sampling unit F as in the chosen turnover Part 2: 3.1

n.n. compositional nestedness of a species-poor sampling
unit in a more species-rich one

sp/sp Part 2: 3.2

n.n. logically inconsistent beta components in which a
and g are based on different datasets

as in the chosen beta component Part 2: 3.3

n.n. average of all pairwise beta component values with
compositional data taken from outside the sampling
units of interest

as in the chosen beta component Part 2: 3.4

Dg/Dx rate of gamma diversity accumulation with increasing
(logarithm of the) number of sampling units

spE/SU or spE/log(SU) Part 2: 4.1.A

Dat/Dx rate of alpha diversity accumulation when sampling
unit size increases in multiples of (logarithm of the)
original size

spE/SU or spE/log(SU) Part 2: 4.1.B

Dlog(g)/Dx rate of gamma entropy accumulation with increasing
logarithm of the number of sampling units

log(spE)/log(SU) Part 2: 4.2.A

Dlog(at)/Dx rate of alpha entropy accumulation when sampling unit
size increases in multiples of the logarithm of original
size

log(spE)/log(SU) Part 2: 4.2.B

DbM/Dx or DDc/Dx rate of change in a beta component of diversity with
increasing number of sampling units

(unit of the beta component)/SU Part 2: 4.3.A

DbM/Dx or DDc/Dx decay rate of a beta component of diversity when
sampling unit size increases in multiples of original size

(unit of the beta component)/SU Part 2: 4.3.B

DbPt/Dx proportional effective species turnover accumulation
rate when an increasing proportion of the available
sampling units is taken into account

(spE/spE)/SU Part 2: 4.3.C

Dlog(qbM)/Dx rate of change in beta entropy or regional entropy
excess with increasing logarithm of the number of
sampling units

(unit of entropy)/log(SU), e.g. bits/log(SU) Part 2: 4.4

n.n. species diversity or entropy accumulation rate with
alpha and gamma diversities based on different data

as in the chosen accumulation rate Part 2: 4.5
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inverse of Simpson concentration. The larger the value of q,
the smaller the fraction of an effective species that is
contributed by the rare actual species. The same
is true of alpha diversity (qDa�ad or qD̄gj�at), so diversity
values based on different values of q are not comparable, and
a and g based on different q cannot be used to calculate a beta
component (qb). When q�0, effective species turnover
equals actual species turnover, but increasing q causes the two
to diverge as effective species turnover becomes increasingly
determined by differences among sampling units in the
proportional abundances of the most abundant species.
Abundance itself can be measured in different ways that are
not interchangeable. For example, when tree plots of a fixed
surface area are used, increasing the value of q increases the
differences between results based on the number of stems and
those based on basal area or biomass. With these considera-
tions in mind, the superscript q will be omitted in the present
paper, unless a specific value of q needs to be indicated.

Each definition of a beta component quantifies a different
phenomenon, so their values are not commensurate. The
minimum value is zero in some beta components and unity
in others. The maximum values of all beta components vary
with the number of sampling units N, but they also depend
on the value of q, on sampling unit weights (which ideally
reflect an appropriate measure of sampling effort) and, in one
case, on alpha diversity. The beta components only have a
consistent upper bound if all sampling units are weighted
equally or q�1 (Table 1 and Tuomisto 2010). In the present
paper, it is therefore assumed that sampling unit weights are
equal. Because the upper bound depends on N, comparing
beta components based on different N is problematic.
Therefore, the number of sampling units used when
calculating the beta component will, in some cases, be
made explicit with the help of a subscript.

Some basic definitions of ‘‘beta diversity’’ are based on
the raw value of a diversity index rather than on a true
diversity. Such measures include regional Shannon entropy
excess (H̄ 0

g�gj �H 0
g�H̄ 0

gj where H ? is the Shannon
entropy) and regional variance excess (2l̄gj�g�

2 l̄gj �
2lg

where 2l is the Simpson concentration; see Tuomisto 2010
for details). When regional Shannon entropy or variance
excess is discussed in the present paper, this will be stated
explicitly; the notation Dc does not refer to them.

A basic definition of a beta component can be applied to
an existing dataset in several different ways. Many of the
possible approaches do not actually quantify the chosen beta
component itself. Instead, they may quantify just a part of the
beta component, the rate of change in the beta component
along some external gradient, or some other phenomenon.
Nevertheless, the results from all of these approaches have
been called ‘‘beta diversity’’ (some of these were discussed by

Jurasinski et al. 2009). The purpose of the present paper is to
review what the different approaches in fact quantify, and
how they relate to one another. Attention is also given to
sampling considerations when the purpose of the study is to
draw conclusions on ‘‘beta diversity’’ in a region of interest
that is too large to be entirely inventoried, and the available
dataset therefore only provides a sample of it.

1. Accurate approaches to quantifying bM

or Dc

1.1 The regional approach bMtot or Dctot

When the aim of a study is to quantify the total amount of
compositional heterogeneity or effective species turnover in
a dataset, the regional approach is the way to go. In this
approach, the chosen basic definition of a beta component
is applied such that all available data are used, and the
subscript ‘‘tot’’ can be used to express this. The interpreta-
tion of the obtained bMtot or Dctot value is then exactly
according to the chosen definition.

Often the available dataset is a sample of a larger region
of interest, and the purpose is to compare the beta
components in separate regions. If so, it is important to
take into account that the maximum values of all beta
components depend on the number of sampling units N
(Table 1). Erroneous conclusions on which regions are
compositionally most heterogeneous or have most effective
species turnover can easily be drawn if regions are
represented by different sample sizes. This problem can
be avoided by using the same N in every region, by way of
rarefaction methods if necessary (Perelman et al. 2001).
Rarefaction implicitly assumes that each sampling unit is
equally good in documenting local species diversity. It is
therefore best applied to datasets where each sampling unit
contains the same total abundance of the organisms of
interest (this can, in turn, be achieved by rarefaction within
the sampling units), or sampling effort has been standar-
dised in some other way that is appropriate for the
questions at hand.

Total absolute effective species turnover bAt can be larger
in a species-rich dataset where all of the actual sampling units
share species with all other sampling units than in a species-
poor dataset where no sampling units share any species. If a
species turnover measure that is independent of alpha
diversity is required, a relative effective species turnover
measure (bMt�1 or bPt) should be used. Conversely, relative
effective species turnover and the compositional heteroge-
neity measures (bM) cannot be interpreted in terms of the
absolute number of species involved.

Table 1. (Continued )

Notation Definition Measurement unit [range] Section

Dc(Dg)/Dg compositional turnover rate along a specified section
of an external gradient g

(unit of chosen turnover)/(unit of external
gradient)

Part 2: 4.6

DDc(DDg)/DDg or
Dlog(1�Dc)(DDg)/DDg

rate of change in (the logarithm of the one-complement
of) pairwise effective species turnover with increasing
distance along an explanatory gradient g (slope of a
distance decay regression)

(unit of chosen turnover)/(unit of external
gradient) or log(unit of turnover)/(unit of
external gradient)

Part 2: 4.7
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1.2 The pairwise approach bMj,k or Dcj,k

The regional approach to quantifying the beta component
gives a single value for the entire dataset of interest.
However, often researchers would like to study how the
beta component varies and what external factors are
correlated with it. This can be achieved by calculating

values of the beta component for different subsets of the
data, such as sampling unit pairs.

Alpha and gamma diversity are derivable from a sites by
species raw data table of N rows and S columns, where each
cell value equals the proportional abundance of the ith
species in the jth sampling unit (level 1 table A in Fig. 1).
Subsets of the data can be formed by taking into account
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Figure 1. How different approaches to quantifying effective species turnover and related measures correspond to the three levels of
abstraction of Tuomisto and Ruokolainen (2006, 2008). Level 1 consists of the raw data measurements at each sampling unit (SU);
species abundances are shown on the left in table A and the values of an explanatory gradient on the right in table C. Community
composition c is a summary of the species abundance information. The score of a sampling unit along the first axis of an ordination (cell
values in table B) approximates its position along the most important compositional gradient, whose relationship with explanatory
gradient g is shown in the level 1 scatterplot (the origin of the y axis is at average community composition). Level 2 data are derived as
dissimilarities based on the level 1 data. Effective species turnover corresponds to Dc; pairwise turnover values are shown in the level 2
dissimilarity matrix D. Dissimilarities corresponding to the same sampling units but based on explanatory data are shown in the level 2
table E, and the relationship between the two dissimilarity matrices is shown in the level 2 scatterplot. Level 3 data are derived as
dissimilarities based on the level 2 data. SUP stands for sampling unit pair. Since the dissimilarity matrices are symmetric, values below
the diagonal are not shown. Proposed definitions of ‘‘beta diversity’’ include variance in table A, the difference between the largest and
smallest cell value in table B, a single cell value in table D, mean of all off-diagonal cell values in table D, the slope of the level 1 regression
line, the length of the vertical side of the triangle delimited by the level 1 regression line, the slope of the level 2 regression line, the length
of the vertical side of the triangle delimited by the level 2 regression line, and the length of the horizontal side of the triangle delimited by
the level 2 regression line. For further explanation, see text.
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just two of the rows at a time; forming all possible pairwise
combinations of the jth and the kth sampling unit yields N2

new raw data tables. The beta components of all these two-
row tables can be quantified and arranged into a derived
data table of N rows and N columns (Fig. 1, level 2 table
D). The raw data table corresponds to the first level of
abstraction sensu Tuomisto and Ruokolainen (2006, 2008;
this is not the same as the first level of abstraction sensu
Legendre et al. 2005), and the derived table to the second
level of abstraction (of both authors).

The level 2 table corresponds to a dissimilarity matrix if
the beta component has a minimum value of zero when the
two sampling units are compositionally identical. This is
the case when any of the effective species turnover measures
Dcj,k is used. If the sampling units have equal weights, 0bAt

multiplied by 2 equals the squared Euclidean distance and
the Manhattan metric calculated using presence-absence
data, 0bMt�1 the one-complement of the Sørensen index
and 0bPt ranged to the interval [0, 1] equals the one-
complement of the Jaccard index (Sections 3, 4 and 5,
respectively, in Tuomisto 2010). Using a dissimilarity
matrix based on 0bMt�1 and 0bPt has been popular in
studies related to ‘‘beta diversity’’, but 0bAt has been used
much less, because its dependence on alpha diversity
complicates interpretation of the results.

Many data analysis methods use a dissimilarity matrix as
a starting point. Principal coordinates analysis (PCoA, also
known as metric multidimensional scaling) and non-metric
multidimensional scaling (NMDS) can be used to visualise
the Dcj,k values in an ordination diagram. Agglomerative
clustering produces a hierarchical classification of the
sampling units such that the sampling units with the
smallest Dcj,k values are combined first. The Mantel test
quantifies the correlation between the cell values in two
dissimilarity matrices. Finally, multiple regression on
dissimilarity matrices and generalised dissimilarity model-
ling quantify the relative contributions of alternative
explanatory dissimilarity matrices to explaining variation
in the response dissimilarity matrix and provide means for
forecasting values of Dcj,k.

Most of these analysis methods are included in
numerical ecology textbooks (Legendre and Legendre
1998), and sometimes their use is explicitly described in
terms of ‘‘beta diversity’’ (Magurran 2004, Tuomisto and
Ruokolainen 2006, 2008, Ferrier et al. 2007). However,
these methods would only address true beta diversity if the
pairwise values were equal to bMd, which they never are;
the minimum value of bMd is not zero and it is therefore
not a dissimilarity measure. However, because Whittaker’s
effective species turnover bMt�1 is a linear transformation
of bMd, it can be used to obtain results that are consistent
with true beta diversity.

2. Approaches that quantify a derivative of
Dc

2.1 Average of all pairwise values D̄̄c̄j,k

One possible measure of compositional differentiation in a
dataset is the average of all the pairwise effective species
turnover values Dcj,k (Whittaker 1972). In Fig. 1, this
corresponds to the average of the off-diagonal cell values in
the level 2 dissimilarity matrix D, or to the corresponding
single y value in the level 2 scatterplot. This average
quantifies how much effective species turnover of the chosen
kind (bMt�1, bPt or bAt ) is expected between two sampling
units drawn at random (without replacement) from the
dataset.

When average pairwise values Dc j ;k from several datasets
are compared with the corresponding regional values Dctot,
a positive correlation can be expected between the two kinds
of measure. However, the pairwise values are constrained
by N�2, whereas the total values are generally based on
larger values of N, so Dc j ;k is usually much smaller than
Dctot (Fig. 2).

Following the suggestion of Whittaker (1972), quantify-
ing ‘‘beta diversity’’ with average pairwise compositional
dissimilarity has been relatively common. The median has
been used occasionally (Clarke and Lidgard 2000), but
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Figure 2. How different approaches to calculating compositional heterogeneity 0bM and compositional turnover Dc (as based on
Whittaker’s species turnover 0bMt�1) reflect the data from a 9-cell window of a regular grid. All sampling units (identified by letters) with
the same community type (numbers) have identical species compositions, and sampling units with different community types share no
species. bMtot and Dctot are calculated for the entire window (Section 1.1 of the text); b̄Mj ;k

and Dc j;k are averages of all pairwise values
between the cells (Section 2.1); Dc j ;centr is the average of pairwise values between each cell and a regional compositional centroid (Section
2.2); and Dc j;F is the compositional distinctness of the focal sampling unit F (Section 3.1).
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most studies have used the arithmetic mean. For presence-
absence data, Dc j ;k seems most commonly to have been
based on mean 0bPt as ranged to the interval [0, 1] (which
equals the one-complement of the Jaccard index; Scheiner
1990, Scheiner and Rey-Benayas 1994, Clarke and Lidgard
2000, Balvanera et al. 2002, Ellingsen and Gray 2002, Mac
Nally et al. 2004, Tuomisto and Ruokolainen 2005, Urban
et al. 2006, Shurin et al. 2009). Mean 0bMt�1 (which
equals the one-complement of the Sørensen index) has also
been used (Vazquez and Givnish 1998, Hernández et al.
2008). It has even been suggested that any dissimilarity
index can be applied (Tuomisto and Ruokolainen 2008,
Ricotta and Burrascano 2009), and some studies have
indeed used indices that are not derivable from alpha and
gamma diversity and therefore do not correspond to any
beta component (Oliver et al. 1998, Ellingsen and Gray
2002, Hewitt et al. 2005, Jankowski et al. 2009, Qian
2009). However, even those dissimilarity measures that
correspond to a beta component (bAt, bMt�1 and bPt) do
not quantify true beta diversity (bMd).

The mean of pairwise squared Euclidean distances,
which equals the variance of the raw data table, has also
been promoted as a measure of ‘‘beta diversity’’ (Legendre
et al. 2005). However, this is only compatible with the
concept of Dc when presence�absence data are used, because
in this case the squared Euclidean distance is a linear
transformation of absolute species turnover 0bAt (Section 3
in Tuomisto 2010). With proportional abundance data, it
quantifies regional variance excess 2l̄gj�g (as in ter Braak
1983; see also Section 7 in Tuomisto 2010). With absolute
abundance data, the squared Euclidean distance is not a
function of alpha and gamma diversity at all (as in Legendre
et al. 2005, 2009, Arias-González et al. 2008).

Bacaro and Ricotta (2007) discussed using the semi-
variogram to examine how ‘‘beta diversity’’ changes with
distance. The semivariogram is obtained by plotting the
semivariance against geographical distance. Because the
semivariance equals the average squared Euclidean distance
between sampling units in a given distance class, it can only
be used to model changes in mean pairwise 0bAt or 2l̄gj�g:
True beta diversity (bMd), regional-to-local diversity ratio
(bMt) and the relative effective species turnover measures
(bMt�1 and bPt) cannot be expressed in terms of squared
Euclidean distances, so their behavior cannot be studied
with the semivariogram. Instead, an analogous graph could
be constructed using the average values per distance class
from a dissimilarity matrix based on bMt�1 or (ranged) bPt.

2.2 Average of pairwise values between sampling
units and a regional compositional centroid D̄̄c̄j,centr

Anderson et al. (2006) proposed that multivariate disper-
sion provides a better measure of ‘‘beta diversity’’ than
average pairwise species turnover as calculated using the
actual sampling units (Dc j ;k ): Multivariate dispersion is
quantified as the mean distance in ordination space between
a sampling unit and the regional compositional centroid.
The centroid is a virtual sampling unit whose average
compositional dissimilarity with the real sampling units
is as small as possible, so it is found at the origin of the
ordination axes obtained by subjecting a compositional

dissimilarity matrix to principal coordinates analysis. If the
chosen compositional dissimilarity measure is compatible
with effective species turnover (Dc), then the mean distance
can be indicated by Dc j ;centr: This quantifies how much effec-
tive species turnover of the chosen kind is expected between the
regional compositional centroid and a sampling unit drawn at
random from the dataset.

Since being proposed by Anderson et al. (2006), the
Dc j ;centr measure has been used at least once (Terlizzi et al.
2009) to quantify ‘‘beta diversity’’. However, Dc j ;centr is a
measure of effective species turnover Dc rather than of true
beta diversity bMd. Since the centroid is by definition in the
middle of the real sampling units, mean turnover between
the centroid and a real sampling units is smaller than that
between two real sampling units Dc j ;k : The latter is already
smaller than the overall effective species turnover in the
dataset Dctot, because its maximum value is constrained by
N�2. The value of Dc j ;centr will therefore always be smaller
than the values of Dc j ;k and Dctot for the same dataset. The
three measures can be expected to be positively correlated
across datasets, but the relationships are not linear (Fig. 2).

2.3 Compositional gradient length Dcj,kmax and
Dc’max

The first axis of an ordination represents, by definition, the
compositional dimension with most variation in a dataset
(Legendre and Legendre 1998). Its length can hence be used
as a measure of compositional gradient length. Figure 1
shows ordination scores, or the positions of the sampling
units along the first ordination axis, in the level 1 table B.
Compositional gradient length is approximated by the
difference between the largest and smallest cell values in
this table (Dc?max). Many studies have used the first axis of
detrended correspondence analysis (DCA) to quantify ‘‘beta
diversity’’ (Hill and Gauch 1980, Økland 1986, Eilertsen
et al. 1990, Økland et al. 1990, Naranjo et al. 1998). The
advantage of DCA axis length is that it is expressed in
standard deviation units, which are considered comparable
across datasets. However, the implicit dissimilarity measure
in DCA is the chi-square metric, which is not a function of
gamma and alpha diversity. Therefore, DCA axis length
quantifies compositional turnover in a way that is not
compatible with those effective species turnover measures
Dc that can be considered beta components of diversity.

A suitable effective species turnover measure Dc can be
used by subjecting a dissimilarity matrix (level 2 table D in
Fig. 1) to principal coordinates analysis (PCoA). The length
of the first PCoA axis (Dc?max) can be interpreted as the
maximum amount of effective species turnover of the chosen
kind that can be observed in one compositional dimension in
the dataset. Compositional gradient length is then related to
the highest values in the compositional dissimilarity matrix
(Dcj,kmax). However, the interpretation of compositional
axis length based on PCoA is complicated by the fact that
the relative effective species turnover measures (bMt�1 and
bPt) saturate at a fixed maximum value when sampling units
share no species. This leads to spurious structures in the
ordination space and underestimation of compositional
gradient length. The simplest solution to this problem is the
‘‘step-across’’ or ‘‘extended dissimilarity’’ approach, in
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which intermediate sampling units are used to estimate the
total compositional distance between sampling units that
share no species (Williamson 1978, De’ath 1999). Hybrid
multidimensional scaling (HMDS), in turn, uses small
compositional dissimilarity values in a metric setting and
large values in a non-metric setting (Faith et al. 1987). This
preserves the rank order of the dissimilarities rather than
their actual values, which solves the problem of dissimilarity
saturation but makes it difficult to compare gradient lengths
across datasets. Although both approaches have potential, I
am aware of no studies that have used PCoA or HMDS axis
length as an explicit measure of compositional gradient
length.

Compositional gradient length is measured along a
single dimension of the multidimensional compositional
space, so only that part of total effective species turnover
that takes place in this particular dimension is quantified.
Datasets can differ substantially in how large a proportion
of the total compositional variation takes place in the first
dimension, so Dcj,kmax and Dc?max can rank datasets in a
different way than Dctot does.

2.4 Compositional gradient length along an external
gradient Dc(Dg)

So far, we have been operating with compositional data only.
However, many ecological studies also record the values of
some external factor g (such as spatial position or an
environmental variable) that is hypothesised to contribute
to change in community composition. The gj values recorded
in each sampling unit j then form a second raw data matrix
(level 1 table C in Fig. 1). The compositional gradient length
along a specified interval of the external gradient Dg is then
Dc(Dg), which quantifies the amount of effective species turnover
of the specified kind that is related to the explanatory gradient.
In Fig. 1, this is approximated by the difference between the y
values that the regression line in the level 1 scatterplot obtains
at gmax and gmin, i.e. jc ?(gmax)�c ?(gmin)j.

Another approach to quantifying Dc(Dg) is to calculate
the beta-turnover measure of Wilson and Shmida (1984, see
also Shmida and Wilson 1985). To do so, one first arranges
the sampling units along the external gradient of interest
and defines for each species its total range along the
gradient. Beta-turnover then equals jG(Dg)�L(Dg)j/2aint.
Here aint is the arithmetic mean number of species at the
points along the gradient, after the species ranges have been
interpolated such that they are continuous. G is the
cumulative number of species gained and L is the
cumulative number of species lost between the beginning
and the end of the gradient section of interest.

All species that are observed along the gradient have to
be gained once, unless they are already present in the
beginning of the gradient section. Similarly, all species have
to be lost once, unless they are still present in the end.
Consequently,

G(Dg )�g�(a�b) and
L(Dg )�g�(a�c)

where g is the total species richness of the dataset, a is the
number of species shared between the beginning and the
end of the gradient section, b is the number of species

present at the beginning but not the end of the gradient
section, and c is the number of species present at the end
but not the beginning of the gradient section. From this
follows that

G(Dg ) � L(Dg )

2aint

�
g� (a � b) � g� (a � c )

2aint

�
2g� (2a � b � c)

2aint

�
2g� 2ab;e

2aint

�
g

aint

�
ab;e

aint

where ab,e is mean species richness of the beginning and
end of the gradient. If the endpoints have the same mean
richness as any other points along the gradient, the term
ab,e/aint equals unity. Beta-turnover then appears similar to
0bMt�1�g/at�1 (see also Vellend 2001). However, there
is one important difference: aint is based on interpolated
ranges of species, which means that all species are assumed
to be present at each point between their first and last
occurrence along the habitat gradient, whether they were
observed in intermediate sampling units or not. The filling
of gaps in species ranges increases the value of aint above
that of at. The smaller the amount of interpolation that is
needed to make species ranges continuous along the habitat
gradient, the smaller the amount by which the value of aint

exceeds the value of at, and the smaller the amount by
which 0bMt�1 (i.e. Dctot) exceeds the value of beta-turnover
(i.e. Dc(Dg)).

Most studies that have used beta-turnover as a measure
of ‘‘beta diversity’’ have applied it to sampling unit pairs
(Simmons and Cowling 1996, Naranjo et al. 1998, Davis
et al. 1999, Koleff et al. 2003a, b, Bach et al. 2007). In this
case, no interpolation of species ranges is possible, so beta-
turnover takes the same value as 0bMt�1 (�the one-
complement of the Sørensen index). Some studies used
N �2 sampling units arranged along a geographical rather
than a habitat gradient, and counted the cumulative
number of gained and lost species from one end of the
gradient to the other without first interpolating species
ranges (Blackburn and Gaston 1996, Willig and Gannon
1997). Disjunct species ranges cause the same species to be
counted as lost and/or gained more than once, which leads
to values that overestimate Dc(Dg) and can even be larger
than Dctot.

Another approach to estimating compositional gradient
length along an external gradient is to first quantify the
instantaneous rates of compositional turnover (to be
defined in Section 4.6) for all points along the gradient,
and then take the sum of these (which corresponds to taking
the integral of the instantaneous turnover rate function;
Wilson and Mohler 1983, Oksanen and Tonteri 1995).
Depending on how the instantaneous rate of compositional
turnover is quantified, this approach may or may not
measure turnover in a way that is consistent with a beta
component of diversity.

Compositional gradient length along an external gradi-
ent Dc(Dg) is dependent not only on compositional data, but
also on which external reference gradient is chosen and
which part of that gradient is observed. This is because only
that part of total compositional gradient length Dcj,k max or
Dc?max is quantified that is related to the relevant interval of
the external gradient of interest Dg. A given compositional
dataset can easily show a substantial amount of effective
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species turnover along one environmental gradient but very
little along another. Consequently, Dc(Dg) measures a
different phenomenon than the corresponding total effec-
tive species turnover Dctot does. The two may or may not be
correlated across datasets, and this can depend on, among
other things, whether the environmental gradients them-
selves are comparable.

2.5 Number of half-change units DDg(Dlog(1�Dc))

In one of his examples on how ‘‘beta diversity’’ can be
quantified, Whittaker (1960) introduced the number of
half-change units. The half-change unit is derived from a
scatterplot in which the x axis shows Dgj,k values and the y
axis shows log(CS) values, CS being the Sørensen index and
representing 1�Dcj,k (Fig. 3; compare with the level 2
scatterplot of Fig. 1). The number of half-change units
(HC) equals:

HC �
DDgmax

DDg(D0:5C )

�
Dgmax � Dg0

Dg(0:5C ) � Dg0

�
Dgmax

Dg(0:5C )

Simple geometry dictates that HC can also be calculated as
(Fig. 3):

HC �
log(CS(Dg0)) � log(CS(Dgmax))

log(CS(Dg0)) � log(CS(Dg0)=2)

�
log(CS(Dg0)=CS(Dgmax))

log2

Here CS(Dgmax) is the expected Sørensen index value
between those sampling units that are furthest away from
each other along the environmental gradient of interest (see
also Whittaker 1972, Vellend 2001). The half-change unit
itself is DDg(D0.5C), which quantifies the amount of increase in
environmental distance needed to reduce compositional simi-
larity between sampling units by one-half. The number of half-

change units then expresses the length of the environmental
distance gradient in multiples of the half-change unit. In terms
of community composition, the number of half-change units
quantifies how many times the compositional similarity is
halved along the Dg axis, when comparison is consistently
made with the value at the end of the previous half-change
unit. This measure assumes that compositional similarity CS

behaves like the number of atoms of a radioactive element:
adding one half-change unit to the x axis value always halves
CS, no matter what the initial Dg value. For example, the
regression model may forecast that CS between sampling
units in the same geographical location is 1.0 and CS between
sampling units 50 km apart is 0.5. Then CS between
sampling units 100 km apart is forecasted to be 0.25,
between sampling units 150 km apart 0.125 and so on. A
study extent of 150 km would then correspond to 150 km/
50 km�3 half-change units. As the number of half-change
units increases, the estimate that HC gives of the length of
the explanatory gradient becomes less accurate, just as age
determination based on radioactive decay becomes less
accurate when the number of half-times increases.

The number of half-change units represents a higher
level of abstraction than the previous beta diversity
measures, namely level 3 (Tuomisto and Ruokolainen
2006, 2008). This level is a result of taking Dc values
from level 2 and calculating DDc values for them. All
pairwise DDcj,k values can be arranged into a level 3
dissimilarity matrix with N 2 rows and N 2 columns, where
each cell value is the difference between two sampling unit
pairs in their within-pair compositional dissimilarity (table
F in Fig. 1). Level 1 data correspond to community
composition c, level 2 data to difference in community
composition Dc and level 3 data to difference in difference
in community composition DDc. In a similar way, level 3
data are derived for the environmental data (table G in Fig.
1). The number of half-change units can be referred to by
DDg(Dlog(1�Dc)) which indicates that it quantifies level 3
explanatory data in terms of differences in log-transformed
one-complements of level 2 compositional dissimilarities.
Obviously, values of DDg(Dlog(1�Dc)) obtained for the same
compositional data can vary widely depending on the
choice of reference gradient g. The beta components of
diversity correspond to Dc, and therefore differ from HC in
both the focal kind of data (compositional vs explanatory)
and in the level of abstraction addressed (level 2 vs level 3).
The number of half-change units has nevertheless been
used as a measure of ‘‘beta diversity’’ in several studies
(Whittaker 1960, 1972, Lee and La Roi 1979, Oksanen
1983, Vellend 2001).

3. Approaches that distort bM or Dc

3.1 Compositional distinctness of a focal sampling
unit D̄¯c̄j,F

Compositional distinctness of a focal sampling unit Dc j ;F

quantifies how much species turnover is expected to take place
between the focal sampling unit F and another sampling unit
drawn at random from the dataset. In Fig. 2, Dc j ;F is the
mean pairwise species turnover between the focal sampling

log(1–∆cj,k)
= log(C

S
)

log(CS(∆g0))

log(CS(∆g0)/2)

log(CS(∆gmax))

∆g0 ∆g(0.5C)
∆gmax ∆g

Figure 3. The derivation of the half-change unit and the number
of half-change units in a dataset. The data from the level 2
scatterplot in Fig. 1 is here displayed such that the y axis has been
converted to similarities by subtracting from unity and then log-
transformed. Compositional similarity is quantified using the
Sørensen index (CS). The regression line shows the expected
decrease in log(CS) as a function of increasing intersample distance
along gradient g. The half-change unit is the distance Dg(0.5C) at
which the expected compositional similarity equals half of the
estimated value at Dg�0, and the number of half-change units is
DDgmax/DDg(D0.5C).
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unit F and the other sampling units j within the specified
geographical window.

In practice, compositional distinctness of a focal sam-
pling unit has mostly been used in macroecological studies
where a large area is divided into a grid of equally-sized
cells. A moving window of a fixed number of grid cells is
used, for example 3 by 3 cells. The grid cell at the center is
the focal sampling unit, and the other grid cells in the
window are the sampling units whose pairwise species
turnover values with the focal sampling unit are averaged.
Alternatively, the average of pairwise values obtained
between the focal sampling unit and a specified number
of its neighbours to any of the cardinal directions can be
used.

Although compositional distinctness of a focal samp-
ling unit has been used to quantify ‘‘beta diversity’’
(Lennon et al. 2001, Hewitt et al. 2005, Gaston et al.
2007, Hernández et al. 2008), it is in fact insensitive to the
amount of compositional heterogeneity within the window.
Instead, the value of Dc j ;F depends on which sampling unit
is chosen as the focal one; consider using sampling unit G
instead of F in Setup 1 of Fig. 2. Obviously, what Dc j ;F

quantifies is not correlated with either Dctot or Dc j ;k ; so
using Dc j ;F as a measure of ‘‘beta diversity’’ can give very
misleading results.

3.2 Compositional non-nestedness of a species-poor
sampling unit in a species-richer one

Simpson (1943) was interested in the degree to which
species in a species-poor sampling unit are a subset of
species in a more species-rich sampling unit, and quantified
this with Ssim�a/[a�min(b, c)]. Here a is the number of
species shared by both sampling units, b is the number of
species unique to the first sampling unit and c is the number
of species unique to the second sampling unit. This index
measures the degree to which the species-poorer sampling
unit is compositionally nested within the species-richer
sampling unit. Ssim resembles the Sørensen index CS�
1�0bMt�1 but ignores all species that are unique to the
species-richer sampling unit, and hence obtains a larger
value than CS whenever b and c differ. Whereas 0bMt�1

quantifies relative species turnover (which takes into
account both species gains and losses between two sampling
units), 1�Ssim quantifies relative species loss when moving
from the less species-rich sampling unit to the more-species rich
one, i.e. the proportion of the species-poorer sampling unit that
is not nested in the species-richer one.

Baselga (2010) partitioned ‘‘beta diversity’’, which he
equated with 0bMt�1, into two additive components, one
of which was 1�Ssim. Several other studies have used 1�
Ssim itself as a measure of ‘‘beta diversity’’ (Koleff et al.
2003b, Mena and Vázquez-Domı́nguez 2005, Baselga and
Jiménez-Valverde 2007, Baselga 2008, La Sorte et al. 2008,
Qian 2008, 2009, Leprieur et al. 2009). Most of these
studies referred to the beta-sim measure of Lennon et al.
(2001), but this is actually the mean 1�Ssim value between
a focal sampling unit and each of its neighbours in a
specified geographical window. Beta-sim as originally
described has therefore been used as a measure of ‘‘beta-
diversity’’ less often than appears from the number of times

it has been cited (Koleff and Gaston 2002, Gaston et al.
2007, Kallimanis et al. 2008, Melo et al. 2009).

Beta-sim is analogous to compositional distinctness of a
focal sampling unit (Section 3.1, above), but the phenom-
enon it quantifies is the expected degree to which the less
species-rich sampling unit is compositionally not nested within
the more species-rich one when the focal sampling unit
is compared to another sampling unit drawn at random
from a geographical window. Just like compositional dis-
tinctness of a focal sampling unit, beta-sim is very sensitive
to the choice of the focal sampling unit. Consequently,
the correlation between beta-sim and Dctot or Dc j ;k may be
weak, and interpreting beta-sim as ‘‘beta diversity’’ can be
very misleading.

3.3 Regional approach with a and g based on
different datasets

It has been rather popular to calculate ‘‘beta diversity’’ such
that the alpha and gamma diversities are derived from
entirely or partly different datasets. In this case, however,
the idea of partitioning g into a and b components is lost,
because the sampling units used to quantify a are not the
same as those used to quantify g. Sometimes such a
discrepancy has arisen inadvertently when the aim was to
harmonise sampling effort among sites: sites with very small
sampling effort were excluded when quantifying a but
included when quantifying g (Clarke and Lidgard 2000).

Some studies have divided the total species richness of a
regional dataset by the species richness of a focal sampling
unit to quantify bMt (Lennon et al. 2001, Gaston et al.
2007), bMt�1 (Kallimanis et al. 2008) or log(bMt)
(Soininen et al. 2007). However, bMt�g/at where at�
ḡj is the mean species richness in all the sampling units j
that contributed to g (Diversity in relation to two classifica-
tions in Tuomisto 2010). Replacing at by the species
richness of a focal sampling unit gives the ratio g/gF (where
gF is gamma diversity at a more local scale, within sampling
unit F). This quantifies how many times as rich in species
the regional dataset is than the focal sampling unit.
Selecting a different focal sampling unit from the same
regional dataset could give a very different value of g/gF.
The degree of error made if this measure is interpreted as if
it equaled 0bMt depends on the degree to which gF deviates
from the mean species diversity of all sampling units
ḡj �at:

Following the beta-2 measure of Harrison et al. (1992)
and the beta-3 measure of Williams (1996), several studies
have used the sampling unit with the highest species
richness gjmax as the focal sampling unit (Blackburn and
Gaston 1996, Oliver et al. 1998, Davis et al. 1999, Clarke
and Lidgard 2000, Gray 2000, Koleff and Gaston 2001,
Plaza Pinto et al. 2008). This approach quantifies the
smallest possible value of ranged 0bMt (in the case of beta-2)
or 0bPt (in the case of beta-3), i.e. the value that would be
obtained if all sampling units had as many species as the
most species-rich one that has actually been observed, but
total species richness remained unchanged. The approach
has been justified by arguing that using gjmax makes the
measure less sensitive to trends in within-sampling-unit
species diversity (Harrison et al. 1992). However, such a
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trend is an indication of compositional heterogeneity, and
therefore relevant when the focus is on beta diversity. A
consequence of using gjmax instead of ḡj is that it makes the
estimate of ‘‘beta diversity’’ dependent on the variability
among sampling units in gj, with the amount of under-
estimation being related to the amount by which the highest
within-sampling-unit species richness gjmax happens to
exceed ḡj in the data. An even more extreme approach
was taken by Arias-González et al. (2008), who used the
variability in gj as a measure of ‘‘beta diversity’’, and thereby
entirely detached the concept of ‘‘beta diversity’’ from alpha
and gamma diversity.

Harrison (1997) used each sampling unit as the focal
one in turn to obtain as many estimates of g/gF for each
region as there were sampling units, and reported their

arithmetic mean. However, mean g=gF ð� 1

N
a

N
j�1g=gjÞ

equals 0bMt�g=ḡj ð�g= 1

N
a

N
j�1gjÞ only when all sam-

pling units have the same species richness gj. As the
variability in gj among the sampling units increases, mean
g/gF increasingly exceeds 0bMt.

Stevens and Willig (2002) quantified ‘‘beta diversity’’ as
1�gF/g for different regions in the Americas such that gF

values were taken from publications reporting numbers of
species observed in field sites, and g was inferred from a
compilation of species distribution maps. Rather than
quantifying proportional species turnover ( 0bPt�
1� ḡj=g) in a defined dataset, this measure quantifies
how large a proportion of the species that are thought to
occur in a region were actually found in a given field
sampling unit. Since the sampling effort was not uniform
for either gF or g, the continental variation in 1�gF/g
reflects variation in the quality of the distribution maps and
the thoroughness of the field sampling to an unknown
degree (Biases and constraints, below).

3.4 Average of all pairwise values with compositional
data taken from outside the sampling units of interest

Mumby (2001) suggested that ‘‘beta diversity’’ can be
quantified with the help of a habitat map. First, field
sampling units are classified into habitat types using
compositional data. Then the habitat classification is
extrapolated to the entire area of interest using a satellite
image. Finally, a moving window of a fixed number of
pixels is passed over the satellite image. For each window
position, the average of all pairwise compositional dissim-
ilarity values between those field sampling units that represent
the spectral habitat types found in the pixel window is
calculated.

The main problem with the approach is that none of the
field sampling units that are used to calculate average
pairwise compositional dissimilarity between pixels in a
given window need to come from that window. Therefore,
the obtained compositional dissimilarity values represent
the compositional heterogeneity of the habitat classes
over the entire extent of the study, which may be
considerably larger than the extent of the pixel window
being considered. As a consequence, average compositional

dissimilarity between pixels within the window is probably
overestimated.

Harborne et al. (2006) modified the approach by taking
into account the proportional abundances of the different
habitats in each window. They calculated the sum of the
squared Bray-Curtis index values between habitat type
pairs, log-transformed the sum, and multiplied the result
by a diversity index based on habitat type abundances
within the pixel window. It is difficult to see what this index
quantifies, but clearly it is not related to any of the beta
components that can be derived from gamma and alpha
diversity.

4. Approaches that quantify a rate of change

4.1 Species diversity accumulation rate DqD/Dx

Species diversity accumulation can be defined as the
increase in the effective number of observed species qD
with increasing sampling effort (traditional species accu-
mulation is obtained as a special case when q�0).
Sampling effort can here be quantified with the number
of sampling units, provided that each sampling unit (SU)
represents the same sampling effort (in terms of the number
of individuals observed, surface area inventoried, or other
appropriate criterion). Species diversity accumulation rate is
a measure of how rapidly the effective number of species
increases as sampling effort increases. This can be calculated as
Dy/Dx, which is the mean slope of a species diversity
accumulation curve over a defined interval of sampling
effort Dx. Here Dy�DqD is the difference in mean
observed species diversity corresponding to Dx. If the x
axis is log(sampling effort), then

Dx �Dlog(n SU)� log(n2 SU)� log(n1 SU)� log(n2=n1)

where n is the number of sampling units at the subset size
of interest. Equally well, the x axis can be linear, in which
case

Dx �Dn SU� (n2�n1) SU

Both the interpretation of the result and its numerical
value will be very different depending on whether the x
axis is log-transformed or not. In both cases, the value of
Dx is dependent on how the sampling units have been
defined and how many of them there are.

Scheiner (2003) classified species-area curves (which are
species accumulation curves where sampling effort is
defined by surface area) into four different types according
to the geographical distribution of sampling units. Type II
curves are obtained when the study region is divided into a
grid, and each grid cell is a sampling unit (lag�0). Type III
curves are obtained when sampling units are spread over the
entire extent of the study region but do not cover it all, so
that adjacent sampling units are not contiguous (lag�0). In
practice, Type III curves are prevalent among studies that
obtain their data by doing field work, whereas Type II
curves are mostly used in macroecological studies that
obtain their data from museum records or distribution
maps. Scheiner’s concepts can be made more general by
allowing other definitions of sampling effort than surface
area; let us here use the number of individuals. Then lag�0
means that all individuals of the target group that actually
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exist within the extent of the study are included in one of
the sampling units, and lag�0 means that a part of the
individuals remain unobserved.

Both Type II and Type III curves can be either spatially
explicit (Type A) or spatially non-explicit (Type B; Scheiner
2003). This distinction is what concerns us now, because it
determines whether the y axis quantifies total species
diversity in the focal set of n sampling units (g) or mean
species diversity within sampling units (at). This leads to
two kinds of effective species accumulation rate.

4.1.A Gamma diversity accumulation rate Dg/(Dn SU) or
Dg/Dlog(n SU)
Spatially non-explicit (Type B) species accumulation curves
trace the increase in mean observed gamma diversity as an
increasing number of sampling units is taken into account.
Such curves can be produced by drawing sampling units at
random from the entire pool of available sampling units, as
is done in software such as EstimateS (Colwell 2009). The
mean effective number of species for subset size n SU is
then determined ( qD̄g(n)� ḡ(n)) and an average species
accumulation curve drawn. These curves have also been
called collector’s curves, rarefaction curves and randomised
or smoothed species accumulation curves (Colwell and
Coddington 1994, Gotelli and Colwell 2001, Colwell et al.
2004). Figure 4A shows an example based on species
richness (q�0); examples of (unsmoothed) gamma diver-
sity accumulation curves for different values of q can be
found in Magurran (1988, p. 53).

Average gamma diversity accumulation rate can be
determined between any two subset sizes as the slope of
the line connecting the corresponding points along the
smoothed curve (Fig. 4A). It is noteworthy that lag
decreases with increasing n, because larger n means that
more sampling units are drawn from the same region. In

contrast, grain and extent are constant, because the
definition of a sampling unit and the total pool of sampling
units remain unchanged.

4.1.B Alpha diversity accumulation rate Dat/(Dm SU) or
Dat/Dlog(m SU)
In the spatially explicit curves (Type A), lag and extent
remain constant but the grain of the sampling is changed.
This is achieved by pooling m spatially adjacent original
sampling units to form one larger sampling unit before
quantifying alpha diversity at(N,m) where N is the total
number of sampling units in the dataset. Alpha diversity
equals the generalised mean with exponent 1�q of the
within-sampling unit species diversities qDgj, which corre-
sponds to the arithmetic mean when q�0 (Diversity in
relation to two classifications in Tuomisto 2010). All N
available original sampling units are used, but they are
allocated to N/m new sampling units of m times the original
size, such that each different value of m corresponds to a
different grain.

The alpha diversity accumulation curve traces the increase
in the expected species diversity within a sampling unit as the
sampling unit grows larger (Fig. 4B; see also Lira-Noriega
et al. 2007). Average alpha diversity accumulation rate can
be determined between any two sampling unit sizes as the
slope of the line connecting the corresponding points along
the curve.

Interpretation of diversity accumulation rates
Gamma diversity accumulation curves (spatially non-
explicit or Type B curves) visualise the effect of across-
region sampling intensity, i.e. how inventorying more
sampling units of a fixed sampling effort increases observed
total species diversity. In contrast, alpha diversity accumula-
tion curves (spatially explicit or Type A curves) visualise the
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Figure 4. Species diversity accumulation curves. (A) In the smoothed spatially non-explicit curves, n sampling units are drawn at random
from the full set of sampling units. For each subset size n SU, the curve shows mean gamma diversity ḡ(n); which equals the gamma
diversity of the entire dataset when n�N, and the expected species diversity in a single sampling unit when n�1. Mean Dg(1;n) equals
mean absolute species turnover in subsets of n sampling units bAt(n,1) (scale at left). When n�N, Whittaker’s species turnover can be
obtained as Dg(1;N)/at(N,1) (scale at right). (B) In the spatially explicit curves, m spatially adjacent sampling units are pooled to form one
new sampling unit. For each sampling unit size m, the curve shows the expected species diversity of a single sampling unit at(N,m) in the
entire dataset. The vertical difference Dat(N,m;N,N) equals absolute species turnover bAt(N,m) (scale at left). Proportional species turnover
bPt(N,m) can be obtained for any grain m as Dat(N,m;N,N)/g(N) (scale at right).
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effect of within-site sampling intensity, i.e. how changing
sampling unit size by allocating a larger part of the total
sampling effort to a single sampling unit increases observed
species diversity within sampling units. Note that this
formulation of alpha diversity corresponds to at rather than
true alpha diversity ad; this is necessary if a beta component
of diversity is to be read off the diversity accumulation
curves.

The degree to which the shapes of the spatially explicit
and non-explicit curves differ depends on the spatial
structure of compositional heterogeneity within the study
region. If species composition changes gradually from one
sampling unit to the next, alpha diversity accumulation rate
is small between small values of m and increases towards
larger m, because all neighbouring sampling units are
compositionally similar. As the degree of random variation
and/or local-scale patchiness increases, nearest neighbours
can also be more different. Then the alpha diversity
accumulation curve rises steeply at small values of m and
levels off as m increases. If species are distributed at random
(at a given grain), contiguous sampling units are no more
similar than non-contiguous sampling units, and the alpha
diversity accumulation curve converges on the gamma
diversity accumulation curve (at that grain). The degree of
difference between the two types of curve is therefore an
indicator of the degree of spatial aggregation in the data (see
also He and Legendre 2002, Olszewski 2004). This
interpretation assumes that mean diversity is calculated in
the same way in both curves, i.e. that the generalised mean
with exponent 1�q is used.

These relationships are paralleled in the contrast between
individual-based and sample-based rarefaction curves
(Colwell and Coddington 1994, Gotelli and Colwell
2001, Colwell et al. 2004). An individual-based rarefaction
curve can be thought of as a gamma diversity accumulation
curve based on sampling units that contain exactly one
individual each. A sample-based rarefaction curve is
obtained when adjacent original sampling units (indivi-
duals) are pooled to form new, larger sampling units (as in
the alpha diversity accumulation curve), and randomly
selected subsets of these, at the desired grain, are used to
construct a gamma diversity accumulation curve.

Species diversity accumulation rate has been used or
promoted as a measure of ‘‘beta diversity’’ (Ricotta et al.
2002, Scheiner 2003, 2004, Passy and Blanchet 2007).
However, the slope of a species accumulation curve does
not quantify compositional heterogeneity but the rate of
change in gamma diversity with increasing number of
sampling units (Dg/Dx) or the rate of change in alpha
diversity with increasing sampling unit size (Dat/Dx).
Different kinds of species turnover (Dc) can be deduced
from a species diversity accumulation curve, but all of these
are represented by a difference in the y axis value between
two points along the curve, not the slope of the curve.

The smoothed gamma diversity accumulation curve is
constructed by varying subset size, so the difference in y axis
value between points that correspond to subset sizes n SU
and m SU (with n�m) equals ḡ(n)� ḡ(m): Provided the
generalised mean with exponent 1�q is used, ḡ(1) equals
āt(n;1); so the vertical distance between the point at n and the
point at m�1 becomes

ḡ(n)� āt(n;1)� b̄At(n;1)

i.e. mean absolute effective species turnover in all subsets of
n sampling units (Fig. 4A; see also Crist and Veech 2006,
Gardezi and Gonzalez 2008). If the y axis is divided by
at(N,1), the difference between the y values of the lowest and
highest points of the curve becomes

(g(N )�at(N ;1))=at(N ;1)�bMt�1(N ;1)

i.e. Whittaker’s effective species turnover in the entire
dataset. Unlike mean absolute effective species turnover,
mean Whittaker’s effective species turnover cannot always
be accurately read off the gamma diversity accumulation
curve when nBN. This is because the mean of ratios, such
as b̄Mt�1(n;1); does not equal the ratio of the corresponding
mean numerators (ḡ(n)� āt(n;1)) and mean denominators
(āt(n;1)) unless either the geometric mean is used (i.e. q�1)
or all denominators are equal. In real datasets, at(n,1) values
may vary among the different subsets of n sampling units,
especially when n is small.

The alpha diversity accumulation curve shows the actual
increase in the mean within-sampling unit species diversity
as grain increases. The difference in y axis value between
points that correspond to sampling unit sizes n SU and m
SU (with n�m) equals at(N,n)�at(N,m) (Fig. 4B). When
the entire dataset forms a single sampling unit, at(N,N)

equals g(N). The difference in y axis value between this point
and another point along the curve at(N,m) equals

g(N )�at(N ;m)�bAt(N ;m)

i.e. absolute effective species turnover in the entire dataset
when sampling units are m times as large as originally.
Interpreting at(N,n) as ḡ(n) allows quantifying mean absolute
effective species turnover for any combination of extent and
grain by

b̄At(n;m)� ḡ(n)� āt(n;m)

If the y axis is divided by at(N,N)�g(N), the vertical
difference between the point n�N and another point m
becomes

bAt(N ;m)=g(N )�bPt(N ;m)

i.e. proportional effective species turnover in the entire
dataset at grain m. Unlike mean bAt(n,m), mean bPt(n,m)

cannot be read off the curve when nBN because a different
denominator (ḡ(n)) needs to be used for each different value
of n.

4.2 Species entropy accumulation rate Dlog(qD)/Dx

If the species diversity accumulation curves in Fig. 4 are
modified such that the y axis shows species entropy instead
of species diversity, the species entropy accumulation curve
is obtained. The most commonly used entropy in this
context has been the Rényi entropy qH�log(qD), because
species accumulation curves are often displayed in a log-log
plot. The slope of this curve is the species entropy
accumulation rate, which quantifies how rapidly species
entropy increases as log(sampling effort) increases. Two kinds
of species entropy accumulation rate can be derived
analogously to the two kinds of species diversity accumula-
tion rate.
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4.2.A Gamma entropy accumulation rate
Dlog(g)/Dlog(n SU)
A smoothed spatially non-explicit entropy accumulation
curve can be obtained by log-transforming the y values of
the smoothed gamma diversity accumulation curve of Fig.
4A. The curve traces the increase in gamma entropy as the
number of sampling units that are taken into account
increases. The average gamma entropy accumulation rate at
a specified interval of sampling effort equals the average slope
of the curve at that interval.

4.2.B Alpha entropy accumulation rate
Dlog(at)/Dlog(m SU)
A spatially explicit entropy accumulation curve is derived by
log-transforming the y axis of Fig. 4B. It traces the increase
in alpha entropy as the sampling units grow larger (with
total sampling effort remaining constant). The average
alpha entropy accumulation rate at a specified interval of
sampling unit size equals the slope of the curve at that
interval.

Interpretation of entropy accumulation rates
Species entropy accumulation rate has been used or
promoted as a measure of ‘‘beta diversity’’ (Caswell and
Cohen 1993, Rosenzweig 1995, Vazquez and Givnish
1998, Scheiner 2003, 2004, Smith 2008), but the approach
has also been criticised (Connor and McCoy 1979, Wilson
and Shmida 1984). Indeed, the slope of an entropy
accumulation curve does not quantify the amount of
compositional heterogeneity in the data, and the two need
not even be correlated. However, the difference in the y axis
value between specific points along the curve can be
interpreted in terms of the regional-to-local diversity ratio
bMt, provided that the generalised mean with exponent 1�
q was used to calculate mean species diversity before log-
transformation. It seems that MacArthur (1965, p. 528)
interpreted entropy accumulation curves in this way, rather
than (as suggested by several authors) equating the slope of
the curve with ‘‘beta diversity’’.

In the gamma entropy accumulation curve, the differ-
ence in y axis value between points that correspond to subset
sizes n SU and m SU (with n�m) equals

log(ḡ(n))� log(ḡ(m))� log(ḡ(n)=ḡ(m)):

When n�N and m�1, this equals

log(g(N )=ḡ(1))� log(g(N )=at(N ;1))� log(bMt(N ;1))

i.e. the logarithm of regional-to-local diversity ratio in the
entire dataset. As with gamma diversity accumulation curves
(Section 4.1), this interpretation is not accurate with other
values of m unless q�1. If log(bMt(N,1)) is used as a
measure of ‘‘beta diversity’’ instead of using bMt(N,1) itself,
then ‘‘beta diversity’’ is equated with regional Rényi entropy
excess, which gives regional Shannon entropy excess H̄

0
g�gj

as a special case when q�1. This is not a beta component
of true diversity but of a raw diversity index value (Sections
6 and � in Tuomisto 2010).

In the alpha entropy accumulation curve, the difference
in y value between points that correspond to sampling unit
sizes n SU and m SU (with n�m) equals

log(at(N ;n))� log(at(N ;m))� log(at(N ;n)=at(N ;m)):

When the larger sampling unit contains the entire dataset
(n�N), this can be interpreted as

log(g(N )=at(N ;m))� log(bMt(N ;m))

or the logarithm of regional-to-local diversity ratio in the
entire dataset at grain m. Although

at(N ;n)=at(N ;m)� ḡ(n)=āt(n;m)

has been used as a measure of ‘‘beta diversity’’ (Arita
and Rodriguez 2002), it does not equal mean g(n)/
at(n,m)�mean bMt(n,m) when nBN unless q�1 or the
alpha diversities of all subsets with n sampling units are
identical.

4.3 Rate of change in a beta component of diversity
with increasing sampling effort DbM/Dx or DDc/Dx

4.3.A Accumulation rate of a beta component of diversity
Figure 5A shows the accumulation of arithmetic mean true
beta diversity bMd with increasing subset size (n SU) for
which ad(n,1) and g(n) are quantified in a spatially non-
explicit setting. Mean true beta diversity accumulation rate
between any two points along the curve equals the slope of
the line connecting them. The slope between points
corresponding to a single sampling unit and a set of n
sampling units equals

Db̄Md(1;1;n;1)

Dx
�

b̄Md(n;1) � b̄Md(1;1)

nSU � 1SU
�

b̄Md(n;1) � 1CU

(n � 1)SU

�
b̄Mt(n;1) � 1

n � 1
CU=SU:

A numerically identical result (but with measurement
unit 1/SU instead of CU/SU; Table 1) is obtained if the
y axis shows regional-to-local diversity bMt or Whittaker’s
effective species turnover bMt�1. When n�N, the unitless
value of the slope equals the one-complement of the qCSn

similarity measure for the entire dataset (generalisation of
the Sørensen index; Section 4 in Tuomisto 2010). When
nBN, mean 1�qCSn for all subsets with n sampling units
is obtained. For presence-absence data, 1�0CSn equals the
beta-1 measure of Harrison et al. (1992). Beta-1 and
1�qCSn can therefore be used to quantify the average rate at
which compositional heterogeneity and Whittaker’s (effective)
species turnover increase as sampling effort increases from 1 to
N sampling units. Obviously, DbMd/(Dn SU) does not
quantify the same phenomenon as bMd itself, and the same
is true of DbMt/(Dn SU) and DbMt�1/(Dn SU) (the latter
can be referred to, less specifically, by DDc/Dx).

Beta-1 has been justified by arguing that when beta
diversity is constrained to a fixed range, its values can be
compared across regions that differ in N (Harrison et al.
1992, Blackburn and Gaston 1996). However, beta-1 is no
less affected by N than bMd is. As the number of sampling
units in a sample increases, each additional sampling unit
contributes progressively fewer new species to the sample
(unless all sampling units were identical to start with, or the
region of interest has an effectively infinite species diver-
sity). The amount of increase in mean bMd(n,1) per unit
increase in sampling effort therefore necessarily decreases

35



with increasing n within any one dataset (Section 4 in
Tuomisto 2010). In general, beta-1 values can therefore be
expected to be smaller in datasets with large N than in
datasets with small N.

4.3.B Decay rate of a beta component of diversity
Figure 5B shows the decrease in true beta diversity
bMd(N,m)�g(N)/ad(N,m) with increasing m, where m is the
number of sampling units fused to form one new sampling
unit in a spatially explicit setting (see also Lira-Noriega et al.
2007). Each point along the curve is a single value rather
than a mean, because both g(N) and ad(N,m) are based on the
entire dataset. Increasing m increases ad(N,m) but has no
effect on g(N ), so the curve is monotonically decreasing.
This is in contrast with the spatially non-explicit curve
(Fig. 5A), which is monotonically increasing because g(n)

increases with n but ad(n,1) remains approximately constant.

The slope between the point corresponding to the original
sampling units and sampling unit size m SU equals

DbMd(N ;1;N ;m)

Dx
�

bMd(N ;m) � bMd(N ;1)

mSU � 1SU

�
bMt(N ;m) � bMt(N ;1)

m � 1
CU=SU:

A numerically identical result (although with measure-
ment unit 1/SU) is obtained if the y axis shows regional-to-
local diversity bMt or Whittaker’s effective species turnover
bMt�1. This slope is ecologically interpretated as the rate at
which compositional heterogeneity and Whittaker’s effective
species turnover decrease as sampling unit size increases from 1 to
m times the size of the original sampling units. When m�N,
bMt(N,m) equals unity, and the above equation gives a result
with the same absolute numeric value as beta-1 and 1�qCSN

for the entire dataset (Section 4.3.A, above), but opposite
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Figure 5. (A) The accumulation of mean true beta diversity with increasing n in a spatially non-explicit setting, in which a subset of n
sampling units is randomly drawn from the entire dataset. The slopes of the lines quantify the average rate of change in mean true beta
diversity as number of sampling units inventoried increases over a specified interval. (B) The decrease in true beta diversity with increasing
m in a spatially explicit setting, in which m sampling units are pooled to form a single new sampling unit before calculating true alpha
diversity. The squares represent a dataset with a strong spatial gradient in species composition, and the diamonds a dataset in which the
species are distributed at random. The slopes of the lines quantify the average rate of change in true beta diversity as size of the sampling
units increases over a specified interval. (C) The accumulation of mean proportional effective species turnover with increasing n in a
spatially non-explicit setting, in which a subset of n sampling units is randomly drawn from the entire dataset. The slopes of the lines
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sign. Obviously, beta diversity decay rate DbMd/(Dm SU)
does not quantify the same phenomenon as bMd itself, and
the same is true of DbMt/(Dm SU) and DbMt�1/(Dm SU)
(the latter can be referred to, less specifically, by DDc/Dx).

The spatially non-explicit beta component accumulation
curve is not affected by spatial structure in the composi-
tional data, but the spatially explicit beta component decay
curve is. The initial decrease in the beta component (when
sampling units are still small) is more rapid when species are
randomly rather than patchily distributed (Fig. 5B),
although the mean rate of change between the extremes is
the same as long as the same sampling unit definition is
used at m�1.

4.3.C Proportional species turnover accumulation rate
Figure 5C shows the increase in the arithmetic mean of
proportional species turnover bPt(n,1) when an increasing
proportion of the available sampling units is taken into
account in a spatially non-explicit setting. The rate of change
in mean proportional species turnover between subsets of a
single sampling unit and n sampling units is the slope of the
line connecting the corresponding points along the curve:

DbPt(1;1;n;1)

Dx
�

bPt(n;1) � bPt(1;1)

nSU=nSU � 1SU=nSU

�
(1 � at(n;1)=g(n)) � (1 � at(1;1)=g(1))

1 � 1=n

�
(1 � at(n;1)=g(n))

1 � 1=n
:

The slope between the lowest and highest points along
the curve is obtained when n�N, and it equals the one-
complement of the qCJn measure discussed in Section 5 of
the first part of the present review (generalisation of the
Jaccard index; Jost 2006 and Tuomisto 2010). From Fig. 5C
it can be seen that 1�qCJn quantifies the average rate at
which proportional species turnover increases as proportional
sampling effort increases from one nth part to all of the sampling
units in the dataset. This can also be referred to, less
specifically, as DDc/Dx, which obviously quantifies some-
thing different than Dc (� bPt in this case) itself does.

4.4 Rate of change in beta entropy Dlog(qbM)/Dx

If Fig. 5A were replotted such that both the x and the y axis
were log-transformed, the y axis would show the beta
component of Rényi entropy [�log(qbMd)] rather than
true beta diversity. The accumulation of arithmetic mean
beta Rényi entropy with increasing log(sample size) would
then be traced by a curve drawn through the points
representing the arithmetic means of the log-transformed
qbMd(n,1) values corresponding to each log(n). The slope
of a line connecting two points on this curve quantifies the
average rate at which mean beta Rényi entropy increases
between the two sampling efforts. When sample size increases
from 1 SU to n SU, this equals:

Dlog( qbMd(1;1;n;1))

Dx
�

log( qbMd(n;1)) � log( qbMd(1;1))

log(n SU) � log(1 SU)

�
log( qbMd(n;1)=1CU)

log(n SU=1 SU)
�

log( qbMt(n;1))

log(n)
:

Exactly the same slope is obtained irrespective of whether
the y axis shows log(qbMd) or log(qbMt) values, even in terms
of measurement units since these cancel out.

When q�1, the slope between the lowest and highest
point of the curve equals log(1bM(N,1))/log(N). This equals
RhN, i.e. the Horn index of heterogeneity as generalised to
N sampling units (Section 6 of Tuomisto 2010). When q�
1 and nBN, the equation gives the expected RhN for a
subset of n sampling units. Obviously, the Horn index and
more generally Dlog(qbM)/Dx quantifies a different phe-
nomenon than qbM itself does.

4.5 Species diversity or entropy accumulation rate
with alpha and gamma diversities based on different
data

In Sections 4.1 and 4.2, vertical differences between specific
points in Scheiner’s (2003) Type II and Type III species
diversity or entropy accumulation curves were interpreted in
terms of effective species turnover or regional-to-local
diversity ratio. Such interpretations are possible when the
same set of sampling units is used in all cases, because then
ḡ(1)�atðN ;1Þ (for the spatially non-explicit curves) and
at(N,N)�g(N) (for the spatially explicit curves). This is not
the case with Scheiner’s (2003) Type I curves. These
quantify species diversity or entropy accumulation in a set
of nested sampling units, where each grain is represented by
a single sampling unit, whose size also defines the extent of
the study region at that grain. Type I curves therefore
quantify simultaneously the increase in total species richness
g(N) as extent becomes larger, and the increase in the species
richness of a focal sampling unit gF as its size increases
(these curves are typically based on presence-absence data
obtained from published species lists). If the grain and
extent are decoupled, it becomes possible to quantify g(N)�
gF or log(g(N)/gF) such that gF is based on a smaller grain
and extent than g(N). However, since these measures are
based on the species richness of a focal sampling unit gF

rather than on the mean species richness of all sampling
units ḡ(1)�atðN ;1Þ; they suffer from the same problems as
the measures discussed in Section 3.3, above. Although the
slopes of neither linear nor log-transformed Type I curves
quantify a beta component of diversity, they have been
equated with ‘‘beta diversity’’ (Lennon et al. 2001, Soininen
et al. 2007).

4.6 Compositional turnover rate or effective species
turnover rate Dc(Dg)/Dg

Compositional turnover rate is the rate at which community
composition changes along an explanatory gradient. This can
be quantified between any two sampling units in a way that
is compatible with the concept of effective species turnover
by dividing a pairwise effective species turnover value Dcj,k

with the corresponding Dgj,k value (see the level 2 tables D
and E in Fig. 1). Effective species turnover rate is also
approximated by the slope of the regression line in the level
1 scatterplot in Fig. 1; average turnover rate can be
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quantified for the entire observed range of the explanatory
gradient, or smaller sections of the gradient can be used
(Økland 1986). The instantaneous rate of compositional
turnover can also be estimated using the derivatives of
species response functions or of a compositional change
function along the gradient of interest (Bratton 1975,
Wilson and Mohler 1983, Oksanen and Tonteri 1995).
However, if these methods are used, the results may not be
compatible with effective species turnover as defined on the
basis of alpha and gamma diversity. Compositional turn-
over rate has been called ‘‘beta diversity’’ (Bratton 1975,
Cody 1975, 1986), but it is actually Dc(Dg)/Dg and therefore
quantifies a different phenomenon than true beta diversity
qbMd or even the effective species turnover measures Dc.

Before compositional turnover rate can be calculated, the
external factor for the x axis has to be defined, which leads
to two main variants of compositional turnover rate.

a) The explanatory gradient is geographical location, i.e.
the rate of compositional turnover is measured at a specific
geographical location and in a specific compass direction.

b) The explanatory gradient is an environmental variable
(or a surrogate thereof, such as elevation), i.e. the rate of
compositional turnover along the gradient is measured at a
specific value (or interval) of the environmental variable of
interest.

Very different compositional turnover rates can be
obtained with the same compositional data depending on
which reference gradient is chosen. Compositional turnover
rate has been used to identify zones of rapid turnover along
an explanatory gradient of interest (such as elevation or
ground water depth; Økland 1986). Pairwise turnover
values between sampling units separated by a fixed distance
along the gradient can also be plotted against the
explanatory gradient itself. The points in such graphs
actually represent (Dcj,k, gj), but they can (with caution)
be interpreted in terms of (Dcj,k/Dgj,k, gj) since each Dcj,k

corresponds to the same Dgj,k (Beals 1969, Bratton 1975,
Wilson and Shmida 1984, Bach et al. 2007, Jankowski et al.
2009).

4.7 Rate of change in (the logarithm of the one-
complement of) pairwise compositional turnover
with increasing distance along an explanatory
gradient (slope of a distance decay regression)
DDc(DDg)/DDg or Dlog(1�Dc)(DDg)/DDg

Rate of change in pairwise compositional turnover is the
average rate at which sampling units become compositionally
more dissimilar as distance between them along the external
gradient of interest increases. It can be quantified as the slope
of the regression line drawn through the level 2 scatterplot
in Fig. 1, DDc(DDg)/DDg. If the y axis values (Dcj,k) in this
plot are subtracted from unity to convert them to
similarities, a distance decay plot is obtained (Nekola and
White 1999). The slopes of the two plots have the same
absolute value but opposite signs. The distance decay plot
can also be displayed with a logarithmic y axis, in which case
the slope of the regression line equals Dlog(1�Dc)(DDg)/
DDg (Fig. 3). The slopes obtained with linear vs logarithmic
y axes quantify different things and their values are therefore
not commensurate.

Before the slope of a distance decay regression can be
calculated, the external factor for the x axis has to be
defined. Very different rates of change can be obtained with
the same compositional data depending on which reference
gradient is chosen. Two main variants can be distinguished.

a) The factor of interest is geographical distance, i.e. the
rate of change in (the logarithm of the one-complement
of) pairwise compositional turnover is measured as the
geographical distance between sampling units increases.
An average value can be obtained for all directions if
space is assumed isotropic, but it is also possible to
differentiate between rate of change in pairwise com-
positional turnover in different directions, for example
north�south vs east�west.

b)The factor of interest is environmental difference (or a
surrogate thereof, such as difference in elevation), i.e. the
rate of change in (the logarithm of the one-complement of)
pairwise compositional turnover is measured as the envir-
onmental dissimilarity between sampling units increases.
Environmental difference can be defined using just one
environmental variable or several at a time.

In one of his examples, Whittaker (1960) introduced
both variants, since he used geographical distance as a
surrogate for environmental difference. However, he did
not designate the rate of change as a measure of ‘‘beta
diversity’’, but rather used it as an intermediate step in
estimating the number of half-change units (Section 2.5,
above). Pielou (1975, p. 101) reinterpreted ‘‘beta diversity’’
such that it was no longer the number of half-change units
DDg(Dlog(1�Dc)), but the inverse of the length of the half-
change unit 1/DDg(D0.5C). This equals the absolute value of
the slope of the distance decay regression divided by a
constant (log2; Fig. 3). Cody (1993) referred to the slope
itself as ‘‘beta diversity’’, and recently doing so has become
quite popular. Some studies have used a log-transformed y
axis (Whittaker 1960, Pielou 1975, Vazquez and Givnish
1998, Leach and Givnish 1999, Qian et al. 2005, 2009,
Qian and Ricklefs 2007, Qian 2008, Smith 2008), others a
linear one (Cody 1993, Condit et al. 2002, Davidar et al.
2007, Novotny et al. 2007, Muneepeerakul et al. 2008,
Qian 2009). Both approaches can be justified, but each
quantifies a different rate of change (compare with Sections
4.1 and 4.2, above). Recently also the halving distance, i.e.
the length of the half-change unit Dg(0.5C), has been used as
a measure of ‘‘beta diversity’’ (Qian 2009). This equals the
inverse of Pielou’s measure if the same similarity index (CS)
is used.

These rate-related measures have led to much confusion,
because the term ‘‘beta diversity’’ can now refer to concepts
as different as the amount of effective species turnover (Dc),
the rate of effective species turnover (Dc(Dg)/Dg), the rate of
change in effective species turnover (DDc(DDg)/DDg), the
amount of change in differences along an explanatory
gradient (DDg(Dlog(1�Dc))), the halving distance (Dg(0.5C)),
or the inverse of the halving distance (1/Dg(0.5C)). Some-
times two or three of these meanings have been used in the
same paper (Cody 1993, Vazquez and Givnish 1998, Leach
and Givnish 1999, Novotny et al. 2007, Qian 2009), which
makes accurate communication of ideas and results very
difficult. This is especially problematic because the slope of
a regression line (such as DDc(DDg)/DDg) is independent of
the average y value of the observations (such as Dc j ;k): Thus,
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one cannot be used as predictor for the other. The only
logical link between the two is that the steepness of the
slope is constrained by the variability of the y values; if all y
values are equal, the regression slope is necessarily zero.

Biases and constraints

The bottom line

Quantifying diversity necessitates that the target organism
group be explicitly defined. The target group may be, for
example, trees with diameter at breast height exceeding 10
cm, herbaceous vascular plants, breeding birds, ungulates,
any aquatic animals caught in a net of a specified mesh size,
any arthropods caught in a pitfall trap, a specific family of
beetles caught in a pitfall trap, and so forth. Possible target
groups differ greatly in the size of individuals, population
density per unit area, detectability of the individuals and
existing number of species, and all of these variables have a
great impact on diversity estimates.

Diversity can be calculated for any dataset (sites by
species table), but meaningful ecological conclusions ne-
cessitate that sampling efforts are standardised among
sampling units and datasets (Gotelli and Colwell 2001;
see also Sections 4.1�4.4, above). There are many ways of
quantifying sampling effort, and these are not interchange-
able. One possibility is to define each sampling unit such
that it contains a fixed total abundance of the organisms of
interest. If the number of individuals observed is used as the
abundance criterion, the results are relatively easy to
compare, because each individual has an equal probability
of contributing a new species to the dataset. However,
sometimes a more appropriate measure of observed abun-
dance may be biomass, basal area or cover. Another way of
standardising sampling effort is to use a plot of a fixed
surface area or a fixed period during which observations are
made. When such approaches are used, it needs to be taken
into account that differences in diversity among areas or
target groups may simply be due to differences in the
density of individuals. This, in turn, may depend on the size
of the individuals or a variety of other factors that are
specific to the target organism. These can be, for example,
spatial (size and shape of the sampling unit in relation to the
size of the organisms), temporal (observation season and
time of day) or behavioral (territoriality and tendency to
avoid being seen or caught). Great caution is therefore
needed if diversity values obtained with different kinds of
organisms are compared.

Extrapolating alpha and gamma diversity

All diversity components (a, b and g) are exactly quantifi-
able in any dataset where the observed entities have been
classified into both sampling units and species. However,
often researchers are not interested in the diversity
components of the dataset itself, but in using the dataset
to infer diversity components for larger areas. Typically, the
region of interest contains orders of magnitude more
individuals than the sample dataset, such that the species
identity of only a small proportion of the relevant
individuals is known. Similarly, each site or habitat of

interest may contain many more individuals than the
sampling unit representing it. Using the species diversities
of a single sampling unit qDgj and the sampled dataset qDg
(collectively referred to as diversity of the observed unit
qDO) as estimates of the species diversity of the correspond-
ing target units qDT (site, habitat or region) is therefore
faced with extrapolation problems. It is also possible that
the dataset includes individuals that do not belong to the
target set. For example, the interest may be in breeding
birds but the available dataset also includes non-breeding
individuals. This may cause qDT to be overestimated.

More commonly, the target unit contains all the
individuals of the observed unit and additional individuals
as well. Then observed species richness (0DO) can at most
equal the actual species richness of the target unit (0DT).
The rarer a species, the more individuals need to be
observed (on average) before it is found, so the more rare
species there are, the larger the downward bias when 0DO is
used as an estimate of 0DT. As q increases, the effect of the
rare species on the value of qDO decreases, so the downward
bias in qDT diminishes. However, usually both sampling
and species distributions are spatially autocorrelated, which
biases the sampling towards observing some species over
others and overestimating the abundances of the observed
species. Hence, qDT is probably underestimated at all values
of q.

In general, the larger the size discrepancy (difference in
the number of individuals) between the observed unit and
the target unit, the larger the underestimation error when
qDO is used as an estimate of qDT. If all individuals of the
target group that exist in the target unit are actually
sampled, then qDO necessarily equals qDT. How large a
proportion of the individuals in the target unit need to be
observed for qDO to converge on qDT depends on the
species richness, species abundance distribution and spatial
structure of the target unit, as well as on sampling strategy
(Scheiner 1990, Colwell and Coddington 1994, Gray 2000,
Gotelli and Colwell 2001, Chao et al. 2009).

Imagine two target units, one with 10 species and the
other with 1000 species, each represented by an observed
unit of 100 individuals. For the species-rich target unit,
0DO underestimates 0DT by at least 90%, but for the
species-poor target unit, 0DO may equal 0DT. A much
higher sampling effort is obviously needed in a species-rich
target unit than in a species-poor one for it to be possible to
observe all species. Furthermore, if a target unit is
dominated by a single species, this will also dominate the
sample and fewer species will be observed. If the degree of
dominance is much higher in a species-rich target unit than
in a species-poor one, it is even possible for 0DO of the
former to be smaller than 0DO of the latter.

The spatial and environmental setup of sampling within
the target unit also affect bias. If species distributions within
the target unit are spatially structured, a geographically
biased sample can generally be expected to yield smaller
qDO than a random sample with the same number of
individuals. In practice, geographically biased sampling
caused by limited accessibility in some parts of the target
unit is extremely common. To counteract undersampling
bias, known environmental gradients within the target unit
can be used to maximise compositional coverage of the
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observations (e.g. by the ‘‘gradsect’’ method; Austin and
Heyligers 1989).

If each sampling unit is its own target unit, then
qDO�qDT and the qDgj values have no undersampling
bias. Nevertheless, the alpha diversity estimate for the target
region (mean qDgj) will have sampling error if all sampling
units together do not contain all individuals of the target
region. If the sampling units are biased towards sites with
higher or lower species diversity than the actual regional
mean, then the alpha diversity estimate will be similarly
biased.

Often both sampling units and the corresponding target
units are circumscribed by spatial coordinates. Then both
qDgj and the corresponding qDT values may refer to
unknown numbers of individuals, which makes estimating
the degree of undersampling bias difficult. Especially
macroecological studies suffer from this problem, because
actual sampling efforts may differ by orders of magnitude
among sampling units of the same surface area, but the
ancillary information needed to estimate sampling effi-
ciency is often not available. Comparing diversity patterns
among organisms that differ in individual density, detect-
ability and/or species richness is also risky even if sampling
effort per surface area is uniform. Results of such studies
need to be treated with extreme caution to avoid interpret-
ing patterns in the vagaries of sampling as patterns in species
diversity.

Extrapolating the beta component of diversity

The beta components of diversity (bM and Dc) are
quantified using available alpha and gamma diversity values,
which are subject to the sampling biases discussed above if
extrapolated beyond the actual dataset sampled. If the
observed qDg is an underestimate of the gamma diversity of
the target region, the beta component will be under-
estimated. Conversely, if the observed mean qDgj is an
underestimate of the alpha diversity of the target region, the
beta component will be overestimated. Thereby, the beta
component can be either underestimated or overestimated,
depending on the relative magnitudes of the biases in the
alpha and gamma diversity estimates.

The implications of undersampling are somewhat
different for the regional and pairwise approaches to
quantifying the beta component. The following is written
in terms of effective species turnover Dc, but similar
reasoning applies to the heterogeneity measures bM as
well. Imagine that each sampling unit is representative of
the corresponding target unit, but the total set of sampling
units is not representative of the target region. Then the
Dctot value of the dataset is clearly an underestimate of Dctot

of the target region, but the pairwise Dcj,k values of the
sampling units are accurate estimates of the pairwise Dcj,k

values of the corresponding target units. The average of the
pairwise values in the dataset is an unbiased estimate of the
target average if sampling unit placement is unbiased, but
can become either an underestimate or an overestimate with
biased sampling. The situation is different if the sampling
units are very small in relation to the target units, but their
number is so large that the target region is well represented.

In this case, both the regional and pairwise Dc values are
overestimates of their target values.

Imagine further that a region of interest contains two
habitats that have 10 species each and share 5 species, and
two habitats that have 1000 species each and share 500
species. Whittaker’s species turnover (0bMt�1) between the
two low-diversity habitats is exactly the same as that
between the two high-diversity habitats, namely 0.5. This
is not the case for sampling units containing 100 individuals
each, however. If some species in a habitat have a higher
probability of being included in the corresponding sam-
pling unit than others (e.g. because overall abundances
differ or species distributions are aggregated), then the
values of 0bMt�1 observed between sampling units can
theoretically vary over the entire interval [0, 1] depending
on vagaries of sampling, no matter what the actual 0bMt�1

value between the corresponding habitats. If every species
does have the same probability of being included in a
sampling unit, then 0bMt�1:0.5 between the sampling
units representing the species-poor habitats, because all
species that are actually present in each habitat are probably
included in the corresponding sampling unit. In contrast,
0bMt�1:1 between the sampling units representing the
species-rich habitats, because the number of individuals
sampled is only 10% of the number of species present in
each habitat, and it is unlikely that the same shared species
happen to be sampled in both habitats (Wolda 1981,
Scheiner 1990, Colwell and Coddington 1994, Plotkin and
Muller-Landau 2002, Chao et al. 2006). It is obviously
incorrect to conclude from such 0bMt�1 values that
Whittaker’s species turnover is higher between the two
species-rich habitats than between the two species-poor
habitats. However, a justified interpretation can be made in
terms of the sampling units themselves: Whittaker’s species
turnover really is higher between the two species-rich
sampling units than between the two species-poor sampling
units. This is, after all, what was actually measured.

Diversity differences comparable to this example are
probably quite common in nature, for example between
tree inventories in tropical vs boreal forests. Consequently,
great care is needed if patterns in observed bM or Dc
along external gradients, such as latitude, are interpreted
in terms of habitats or other entities larger than the
sampling unit. If there is a trend in species diversity along
the gradient of interest, a spurious trend in compositional
heterogeneity and effective species turnover may result
simply because the degree of undersampling and hence
the amount of bias depends on species diversity (Colwell
and Hurtt 1994).

When two target units are compositionally very similar,
actual Dcj,k and bMj,k values are small and can hence be
overestimated by a much wider margin than when the
actual Dcj,k and bMj,k values are large. Severe undersampling
therefore causes pairwise effective species turnover and
compositional heterogeneity to converge towards high
values for all sampling unit pairs (Jobe 2008, Cardoso
et al. 2009). This makes unraveling ecological or spatial
trends in Dc and bM more difficult for species-rich than for
species-poor habitats or target organisms (Jones et al. 2008).
When abundance data are available, the undersampling bias
can be corrected to some degree (Chao et al. 2006), but
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extrapolation of Dc and bM should still be done with
caution.

Cardoso et al. (2009) tested how sensitive various ‘‘beta
diversity’’ indices are to undersampling, and used their
robustness to make recommendations on which to use.
However, each one of the indices they tested quantifies a
different phenomenon. These included Whittaker’s species
turnover bMt�1, ranged proportional species turnover bPt,
non-nestedness, measures based on the species richness of a
focal sampling unit, and rates of change. Knowledge about
the sampling behaviour of an index is important when
interpreting the results, but the primary criterion for
choosing an index should be whether or not it quantifies
the phenomenon of interest.

Discussion

It follows from the diversity of beta diversities that
researchers should be explicit about what kind of ‘‘beta
diversity’’ they refer to. Some recent papers on ‘‘beta
diversity’’ are not cited in the present review, because they
did not define ‘‘beta diversity’’ explicitly, and could there-
fore not be placed in the general framework. The frame-
work itself is not exhaustive, because some papers used such
complicated calculations to derive ‘‘beta diversity’’ that I
was unable to figure out the ecological meaning of the final
variable. Many studies have failed to address their stated
research question because the selected method of quantify-
ing ‘‘beta diversity’’ was not compatible with it, or have
compared their results with those of earlier studies in which
a different kind of ‘‘beta diversity’’ had been used. Most of
the indices that have been used as explicit measures of ‘‘beta
diversity’’ actually do not measure a (beta) component of
diversity at all (see, for example, Table 1 in Koleff et al.
2003a). In the absence of clear criteria by which to select
among the available indices, many studies have opted for
using two or more indices in parallel. Sometimes one of
these did measure a beta component of diversity, other
times not.

Species turnover and beta diversity are often considered
synonymous, but Vellend (2001) argued that they should
be maintained separate. Vellend considered beta diversity ‘‘a
value that can be related mathematically to a- and g-
diversity’’, and species turnover ‘‘the rate or magnitude of
change in species composition along predefined spatial or
environmental gradients’’. I find even these definitions too
broad. Not only true beta diversity (bMd) and regional-to-
local diversity ratio (bMt) but also several other variables are
simple functions of g and a (Tuomisto 2010). Three of
these (bAt, bMt�1 and bPt) quantify the total number or
proportion of effective species that change among sampling
units in a dataset, i.e. absolute or relative effective species
turnover Dc. This equals actual species turnover when based
on presence-absence data (q�0). Many other definitions of
compositional turnover have also been used, but since these
are not derivable from gamma and alpha diversity, they do
not quantify (effective) species turnover in this strict sense.
In addition, magnitude of total species turnover (Dctot of
Section 1.1, above) and species turnover in a single
compositional dimension (Dc ?max of Section 2.3) are not
affected by the choice of a reference gradient, but species

turnover along an external gradient is (Dc(Dg) of Section
2.4). Furthermore, magnitude of change along a gradient
does not equal rate of change along that same gradient
(Dc(Dg)/Dg of Section 4.6). The magnitude corresponds to
the difference in y axis value between two points on the
regression line in the level 1 scatterplot in Fig. 1, whereas
the rate corresponds to the slope of the regression line. The
‘‘species turnover’’ measure preferred by Vellend (2001)
actually represents the next level of abstraction, and
corresponds to the maximum difference in x axis values in
the level 2 scatterplot of Fig. 1 (DDg(Dlog(1�Dc)) of Section
2.5). Rather than quantifying change in species composi-
tion, this measure expresses change in environmental
difference in terms of change in similarity in species
composition. Whittaker (1960) himself included in the
original concept of ‘‘beta diversity’’ as well bM as Dc and
DDg(Dlog(1�Dc)); the recent literature on ‘‘beta diversity’’ has
been so confused that a clarification of terminology is
urgently needed.

Jurasinski et al. (2009) reviewed different ‘‘beta diver-
sity’’ concepts and divided them into two groups. The first
group included multiplicative and additive partitioning of
total species diversity. In the present paper, these corre-
spond to regional-to-local diversity ratio (bMt) and absolute
effective species turnover (bAt), respectively. The second
group included a number of different phenomena sub-
divided into four categories. The first category included all
approaches where sampling units are compared in a
pairwise manner using dissimilarity coefficients. As explicit
examples, they mentioned a number of indices that do not
correspond to any beta component of diversity, and the
Sørensen and Jaccard indices, which in the present review
correspond to different basic definitions of a beta compo-
nent. Their second category included the sum of squares of
a sites by species matrix, which corresponds to the average
of all pairwise squared Euclidean distances between sam-
pling unit pairs (Section 2.1, above). Their third category
included the average distance to a compositional centroid
(Section 2.2, above), compositional gradient length (Section
2.3, above) and the number of half-change units (Section
2.5, above). The present paper aims to clarify the
differences among variants even further.

Terminological confusion is apparent, for example, in the
study by Novotny et al. (2007). They used three different
similarity measures to derive ‘‘beta diversity’’. The Sørensen
index corresponds to the one-complement of bMt�1

(Section 1.2, above). The codominance index C(d) (used
also by Chave and Leigh 2002 and Condit et al. 2002)
quantifies the probability that two individuals drawn at
random from sampling units d kilometres apart belong to
the same species. In high-diversity systems, the ‘‘beta
diversity’’ estimate obtained with C(d) approaches zero
whatever the compositional similarity between the sampling
units (Jost 2006 and Section 7 of Tuomisto 2010). The third
index was based on gF/g where gF is the species richness of a
focal site and g the known species richness of the entire
country. gF/g would equal 1/bMt if gF equaled average
sampling unit diversity (Section 3.3, above), but it is more
likely that gjmax was used. In tropical rain forest datasets,
gjmax is easily orders of magnitude higher than mean
sampling unit diversity, and Dctot is hence considerably
underestimated if gjmax is used instead of ḡj : Furthermore,
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the authors’ claim that gF/g indicated ‘‘low beta diversity’’
cannot be evaluated, because no information on sampling
effort was provided. The possible range of values that gF/g
can take given the data at hand is hence unknown (Section 5
of Tuomisto 2010; Biases and constraints, above). Their
fourth ‘‘beta diversity’’ measure was distance decay rate
DDc(DDg)/DDg which is not correlated with any measure of
Dc (Section 4.7). Although their target region was over 500
km long, Novotny et al. (2007) used data from only 4�8
sampling units, which were purposefully placed in similar
environments. This leads to 0DO being a strongly downward
biased estimate of 0DT for gamma diversity. At the same
time, very high within-site sampling effort led to 0DO being
a rather good estimate of 0DT for alpha diversity. The
implications of this sampling strategy were not discussed
when the observation of ‘‘low beta diversity’’ was extra-
polated to tropical forests in other parts of the world.

A more analytical approach was taken by Koleff et al.
(2003b), who made a laudable effort to evaluate how much
the correlation between ‘‘beta diversity’’ and latitude
depends on how the computations are done. They evaluated
ten ‘‘beta diversity’’ indices, which quantify the following
(in same order as in their Table 2):

1. regional-to-local diversity ratio bMt (Section 1.1, above)
2. rate of change in regional-to-local diversity ratio with

increasing number of sampling units DbMt/Dx (Sec-
tion 4.3.A)

3. amount of absolute species turnover along an external
gradient bAt(Dg) (Section 2.4)

4. amount of Whittaker’s species turnover along an
external gradient bMt�1(Dg) (Section 2.4)

5. the rate at which the sum of pairwise bMt�1 values
increases as the number of sampling units in a transect
increases

6. rate of change in 1/bMt with increasing proportion of
sampling units inventoried (Section 4.3.C)

7. rate of change (with increasing number of sampling
units) in how many times as many species all sampling
units together contain than the most species-rich one
of them (Section 3.3)

8. the proportion of species pairs that do not co-occur in
any sampling unit

9. compositional non-nestedness of a focal sampling unit
(Section 3.2)

10. distinctness in species richness of a focal sampling unit.

In addition, Koleff et al. (2003b) tested how the results
are affected by different methods of defining the sampling
units and the study region. Method 1 computes pairwise
‘‘beta’’ index values for adjacent grid cells along a latitudinal
transect, and hence quantifies if the amount of ‘‘beta’’
between adjacent latitudes is correlated with latitude.
Method 2 computes the ‘‘beta’’ index values between entire
latitudinal bands, so any latitudinal trend that may actually
exist in the ‘‘beta’’ index between adjacent latitudes will be
confounded by the effect of varying sampling unit size. This
problem was pointed out and extensively discussed by
Koleff et al. (2003b). In method 3a, the entire latitudinal
belt is used as the study region, and each grid cell within it
as a sampling unit. These values reflect ‘‘beta’’ within each

latitudinal belt, but latitudinal comparisons are problematic
because both the extent of the study region and the number
of sampling units vary among latitudes. In method 3b,
‘‘beta’’ is calculated pairwise for adjacent grid cells within
each latitudinal belt and the average of these pairwise values
is used. Such an average is less affected by the number of
sampling units than a regional ‘‘beta’’ value, especially when
pairwise comparisons are only done among adjacent
neighbours. Consequently, the ‘‘beta’’ values obtained using
method 3b are comparable across latitudes even when
latitudinal belts differ in the number of sampling units, and
this method is suitable when exploring if within-latitude
‘‘beta’’ is correlated with latitude.

Koleff et al. (2003b) obtained rather disparate results
from the different methods, and concluded that we still do
not know if there are latitudinal gradients in ‘‘beta
diversity’’. As discussed above, the different analytical
approaches in effect quantified different phenomena,
many of which are logically uncorrelated with each other.
In hindsight, the outcome of the analyses was perhaps not
very surprising; if you ask a different question, you may get
a different answer. The logical next step is to explore if a
more consistent pattern is found when several datasets are
used to address the same question.

Conclusions

The original definition of ‘‘beta diversity’’ by Whittaker
(1960) was already very broad, and since the coining of the
concept, it has been tremendously stretched to cover the most
varied phenomena. Beta diversity and different kinds of
species turnover can be linked to external factors in different
ways, and related phenomena can be quantified at different
levels of abstraction. Most of the derived phenomena are
interesting and ecologically meaningful in their own right,
but the accuracy of scientific communication necessitates
that conceptually different things be referred to by different
terms. Therefore, care is needed not to confuse beta diversity
itself with the various other phenomena that are derived from
alpha and gamma diversity or otherwise related to beta
diversity. Documenting and understanding patterns in beta
diversity and species turnover at different spatial scales, in
different areas and for different target organisms is in many
ways a huge challenge. Let us avoid the additional difficulties
that emerge from the inconsistent use of terminology.
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