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Abstract. Hypothesis testing in phytocoenological applica-
tions is likely to be hindered when based on conventional
statistical methods. The problem created by unrealistic as-
sumptions can, however, be overcome by randomization. This
paper discusses the general idea of randomization testing,
describes a method and interprets its application in group
comparisons. Two sets of variables are involved, the vegeta-
tion set on the basis of which the groups are compared and the
environmental factors which delimit the groups under differ-
ent analytical designs. Although simple partitioning of sum of
squares is at the core of the test, the method has versatility of
testing uni- or multifactor designs, which is novel in
phytocoenological applications. The algorithm has been im-
plemented in programs SYNCSA and MULTIV by V.P. Data
from the Campos of southern Brazil are used for illustration.

Keywords: Campos; Community; Hypothesis; Interaction;
Multivariate; Testing; Variance.

Nomenclature: Burkart (1969); Rosengurtt et al. (1970).

Introduction

Standard statistical texts address hypothesis testing,
most often in the context of classical ‘Fisherian statis-
tics’ (Greig-Smith 1980). This approach requires the
assumption that variables have a specific type of theo-
retical probability distribution, usually the Normal. The
latter is now considered unduly confining (e.g. Bradley
1968:6; Edgington 1987:13; Potvin & Roff 1993; Orlóci
1993). As a matter of fact, Edgington (1987:5) pointed
out that even if a normal distribution exists in the popu-
lation, it is still an unsuitable model for hypothesis
testing since random sampling that could capture the
‘normal’ structure is rarely implementable.

Randomization testing, often referred as ‘permuta-
tion methods’ is known since long (e.g. Pitman 1937;
Fisher 1951:43; Kempthorne 1952: 128), but the tech-
nique was not practical then. This restricted the formu-
lation of the problem and narrowed the definition of an
‘acceptable’ sampling environment (Orlóci 1993).
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With the availability of fast computers, the advan-
tages of the axiomatic approach largely dissipated and
randomization methods became a practical proposition.
Such methods were described in Bradley (1968) and
Edgington (1969, 1987), but their emphasis is on the
analysis of experimental univariate data. There are prec-
edents applicable to multivariate samples. For example,
Mantel (1967) presented a randomization test for com-
paring distance matrices (see also Smouse et al. 1986;
Oden & Sokal 1992). Manly (1991), Crowley (1992)
and Potvin & Roff (1993) gave reviews, including also
other Monte Carlo methods, such as the bootstrapping
method of Diaconis & Efron (1983) for estimation of
confidence intervals.

Crowley (1992) referred to the class of Monte Carlo
and randomization methods collectively as resampling
methods. Particularly relevant to phytocoenology are
the resampling methods used in population biology (e.g.
Orlóci & Beshir 1976), community ecology (e.g. Orlóci
& Kenkel 1985:80; Orlóci et al. 1986; Legendre &
Fortin 1989; Podani 1991; Cornelius & Reynolds 1991;
Pillar & Orlóci 1993a:69, ter Braak & Wiertz 1994) and
ecosystem analysis (Carpenter et al. 1989).

Phytocoenological data analysis is essentially com-
parative. The relevés are observation vectors including
vegetation and environmental variables as part of the
total record from a site. Whether the relevés are taken
individually or in groups, randomization tests can sup-
ply the probabilities needed for a straightforward sig-
nificance test of the resemblance values.

In this paper we deal with the theory to an extent
necessary for the practitioner in phytocoenology, de-
scribe an algorithm, comment on others, and present
results from Campos vegetation. We see randomization
testing in comparisons of relevé groups analoguous to
the tests in experimental designs involving multivariate
analysis of variance. We rely on simple way of parti-
tioning and testing variation in a manner which has
advantage over others found in Edgington (1987), Manly
(1991) and ter Braak & Wiertz (1994).
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Method

The Null Hypothesis

Hypothesis testing involves probabilistic assessments
of how common an observed value of the test criterion
would be if a chosen Null Hypothesis, H0, were in fact
true. In vegetation data analysis the test criterion may
apply to two or more groups of relevés and H0 may
stipulate random arrangements of relevés among groups.
The test criterion may compare the groups using the
vegetation or the environmental data. For H0 to be rel-
evant some alternative hypothesis or hypotheses must
be in view where these are expected to produce distribu-
tions for the test criterion that are different from that
obtained when the null hypothesis is true.

In randomization, a data set is visualized as one of
many possible permutations of data elements among the
available locations in the data matrix. The collection of
all possible permutations represents a reference set (Hope
1968; Edgington 1987:305). This set can be generated
by systematically shifting data elements between loca-
tions in ways that agree with H0. Edgington (1987:43)
described this as systematic data permutation, under
which each permutation is just as likely as the observed
data when H0 is true. But the reference set may be too
large for direct computation. The solution to overcome
this problem is found in the use of a limited but still large
number of random permutations generated iteratively by
an appropriate algorithm (Dwass 1957; Hope 1968;
Edgington 1987:43). The observed data set is counted as
one iteration.

The test involves the observed value λ of the test
criterion and an associated distribution under the H0.
This distribution allows us to define the probability P
that any randomly chosen value λ° from among those
that materialize in the permuted set will be at least as
extreme as λ. When the test is concerned only with
values that are at least as large as λ:

  
P λ λ λ λo

o

≥( ) = ≥number of iterations in which 

total number of iterations
(1)

The minimum of this is 1 / total number of iterations, that
is, in at least one iteration λ° is the observed value. H0 is
accepted if P is larger than some threshold value α.
Hope (1968) shows that, if the number of iterations is
large, a random sample of the reference set will give
reliable results, that is, P-values close to the exact ones
that would be obtained in complete systematic data
permutation. Crowley (1992) suggested a minimum of
1000 and 5000 iterations for tests at the 5 % and 1 %
significance levels (cf. Edgington 1987:43; Manly
1991:15).

Test criterion

The test we outline is applicable to data from sam-
pling units described by any number of variables. In fact
it is irrelevant what type and how many variables are
involved, provided that an adequate dissimilarity meas-
ure can be found to gauge the level of resemblance in
pairs of sampling units (relevés). In a sum of squares
based test, the test criterion is the sum of squared dis-
similarity between groups:

Qb = Qt – Qw (2)
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This is the sum of squares within the k groups. The terms
in Qw accord with
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which is the sum of squares within group c with size nc.
The indicator variable δ (h, i, c) is one if relevés h and i
belong to group c or zero if otherwise. The additivity of
the terms is valid if the dissimilarity matrix has Euclidean
metric properties; otherwise the algebra in the computa-
tion of Qb and further partitioning will be unacceptable.
Orlóci (1978) and Gower & Legendre (1986) give guide-
lines about measures with these properties. Similar par-
titions of sum of squares were used earlier by Ward
(1963), Edwards & Cavalli-Sforza (1965) and Orlóci
(1967, 1978:239), but for different purposes.

Computing sum of squares from the dissimilarity
matrix has an advantage: it does not require the compu-
tation of group centroids from coordinates and devia-
tions from centroids as used by i.a. Edgington (1987:190)
and Manly (1991). Also, it is not constrained by the type
of variables that describe the vegetation units, provided
that the dissimilarity measure meets the requirements, a
property especially useful in mixed data types.

Designs with two or more factors require the compu-
tation of interactions. Relevé groups may be defined by
the states of the factors considered in isolation or jointly.
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For instance, if factors X and Y have two states each,
there will be four relevé groups based on the joint states.
The joint classification defines a sum of squares as
already explained, which can be partitioned as:

Qb|X+Y = Qb|X + Qb|Y + Qb|XY (6)

Qb|X and Qb|Y are the sum of squares between groups
specific to factors X and Y considered in isolation. Qb|XY

is the interaction term (taken as a difference). Fig. 1
illustrates the computations. Similar manipulations ap-
ply when several factors are considered. A different Qb

is computed for the joint groups and for the groups
according to each factor taken individually, pair-wise,
in triplets, or on higher levels, but then manipulations
can become very complicated. It must be noted that the
computation of an interaction is only feasible when the
data set contains records for all possible combinations
of factor states.

The test may involve multiple contrasts in the same
sense as in Scheffé (1953). A contrast is defined by
positive and negative contrast coefficients indicating
the groups of vegetation units to be compared. For any
contrast j one computes Qtj, the total sum of squares,
Qwj+, the sum of squares within groups with positive

contrast coefficients, and Qwj–, the sum of squares within
groups with negative coefficients. The between groups
sum of squares for contrast j is then Qbj = Qtj – (Qwj+ +
Qwj–). An illustration is given in Fig. 1c. For u = k – 1
independent contrasts,

Qb =
j

u

=
∑

1
Qbj

Provided the coefficients of a contrast are so assigned
that they sum zero, two contrasts are independent if the
inner product of the vectors containing the coefficients
is zero.

The reference set

With a set of relevés, partitioned in groups according
to external criteria, such as some environmental vari-
ables or experimental treatments, a relevant question is
whether the observed compositional difference between
the groups could have arisen by chance alone. The
pertinent H0 must therefore stipulate that the observed
classification of the relevés is a random partition. Where
the groups refer to treatments, as in an experiment, H0

Fig. 1. Example with artificial data to illustrate the computations of sum of squares in a multifactor design. In (a) the matrix contains
the squared Euclidean distances of seven relevés. The relevés are grouped by the states of factors X and Y. The sum of squares accord
to equations in the main text. Table (b) gives computational results. Table (c) computes a contrast with coefficients 1 1 0 -2 for the
groups 11 12 21 22 defined by the joint states of the two factors. This contrast involves relevés 1, 3, 4, 5, 7.

(a)
Factor X 1 2 1 1 2 2 2
Factor Y 1 1 2 1 2 1 2
Relevés 1 2 3 4 5 6 7

1   0
2 193   0
3 220 259   0
4 282 267 292   0
5 209 188 241 303   0
6 135  92 207 273 176   0
7 262 285 210 180 281 229   0

(b)
Sum of squares Computations

Qb|X+Y 355.93 = Qt – Qw|X+Y = 683.43 – 327.50
Qb|X 106.01 = Qt – Qw|X = Qt – [(d2

13)+ d2
14 + d2

34) / 3 + (d2
25 + d2

26 + d2
27 + d2

56 + d2
57 + d2

67) / 4] =
= 683.43 – [(220 + 282 + 292) / 3 + (188 + 92 + 285 + 176 + 281 + 229) / 4 ]

Qb|Y 128.93 = Qt – Qw|Y = Qt – [(d2
12 + d2

14 + d2
16+ d2

24 + d2
26 + d2

46) / 4 + d2
35 + d2

37 + d2
57) / 3] =

= 683.43 – [(193 + 282 + 135 + 267 + 92 + 273) / 4 + (241 + 210 + 281) / 3 ]
Qb|XY 120.99 = Qb|X+Y – Qb|X – Qb|Y = 355.93 – 106.01 – 128.93
Qw|X+Y 327.50 = d2

14 / 2 + d2
26 / 2 + d2

33 / 1 + d2
57 / 2 = 282 / 2 + 92 / 2 + 0 / 1 + 281 / 2

Qt 683.43 = (d2
12 + d2

13 + … + d2
67) / 7 = (193 + 220 + … +229) / 7

(c)
Sum of squares Computations

Qb 90.83 = Qt – (Qw+ + Qw–) = 496 – (264.67 + 140.5 )
Qw+ 264.67 = (d2

13 + d2
14 + d2

34) / 3 = (220 + 282 + 292) / 3
Qw– 140.5 = d2

57 / 2 = 281 / 2
Qt 496 = (d2

13 + d2
14 + d2

15 + d2
17 + d2

34 + d2
35 + d2

37 + d2
45 + d2

47 + d2
57) / 5 =

= (220 + 282 + 209 + 262 + 292 + 241 + 210 + 303 + 180 + 281) / 5
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will stipulate that no differential treatment effect is
evident in the measured compositional structure.

When the factors are not nested, which is the case in
complete randomized designs with any number of fac-
tors, the reference set of the test is defined by unre-
stricted permutation of the observation vectors, our
relevés, among the group memberships. This is equiva-
lent to permuting the group memberships among the
relevés. If a data set has three relevés partitioned in two
groups, where the first two belong to group A and the
last one to group B, there are six permuted sets:

Relevés: 123 123 123 123 123 123

Group memberships: AAB ABA AAB ABA BAA BAA

It is seen that in this example there are two identical
copies of each of three partitions (AAB, ABA, BAA),
but this does not affect the test. The probability of
finding a specific partition by chance is still 1/3, irre-
spective of repetitions in the reference set. It is therefore
implied that the random partitions algorithm can gener-
ate any element in the reference set simply by randomly
allocating n relevés among n group memberships, with-
out being concerned about repetitions. Actually, for n
relevés partitioned in k groups, with the ith group re-
ceiving ni relevés, the complete reference set will con-
tain n! permutations, each one repeated

ni
i

k

!( )
=

∏
1

 times.

In multifactor analytical designs the group member-
ships among which relevés are exchanged in random-
ization are defined by joint group memberships based
on the states of the factors. For example, let member-
ships accord to:

Relevés: 1 2 3 4 5 6 7 8
States of factor X in relevés: 1 2 1 1 2 2 2 2
States of factor Y in relevés: 1 1 1 2 1 1 2 2
Then the joint memberships
       are coded as: 11 21 11 12 21 21 22 22

A possible random permutation of observation vectors
among the groups will be:

Relevés: 2 3 8 5 7 4 6 1

For the sake of completeness we mention also that in
block designs and other nested designs the reference set
is defined by restricting random allocations to the groups
within the blocks (Edgington 1987:148; Manly 1991:67).
For instance, eight relevés are in three groups (FGH) of
factor N  nested within three blocks (ABC) defined by
factor M (block C is incomplete):

Relevés: 123 456 78
Blocks (factor M): AAA BBB CC
Factor N: GFH FHG HG

An element of the reference set is generated by ran-
domly allocating nh relevés among the groups of factor
N within each block h of factor M. A possible permuta-
tion in the example above is:

Relevés: 321 645 87
Blocks (factor M): AAA BBB CC
Factor N: GFH FHG HG

It should be noted that this is adequate for testing the
effect of any number of factors that are below the level
of blocks without further nesting. For testing the effect
of factors that are defining blocks there must, of course,
be replicated blocks. If the number of units in each block
is the same, the blocks can be permuted as a whole. If
not, the units within blocks will have to be averaged and
then permuted, which will require a separate test.

The modus operandi abbreviated

The algorithm takes as input the group memberships
and the dissimilarity matrix of the relevés. At each
iteration the randomization algorithm generates a ran-
dom element of the reference set, rearranges the dis-
similarity matrix accordingly, computes the Qbs that are
relevant to the analytical design, and compares the Qbs

with the corresponding ones actually observed, as al-
ready explained in general terms. After a large number
of iterations, including the observed data set, the prob-
ability of an at least as extreme Qb as the observed is the
proportion P(Qb° ≥ Qb). Fig. 2 illustrates the process.
The results are presented and interpreted in a similar
way as in a conventional analysis of variance.

Example

We use data from relevés taken in grassland commu-
nities, in an area covering 30 ha in the vicinity of Porto
Alegre, in the Campos vegetation formation (Cabrera
1971). The site is grazed and floristically rich (165
species). The soils are yellow-red latosols on convex
slopes and hydromorphic on low-lying terrain. The sam-
ple contains 60 quadrats, 0.25 m2 each, along elevation
gradients in the rolling landscape. The data set contains
estimates of cover-abundance – van der Maarel’s (1979)
1 - 9 ordinal transform scale – for 60 species that were
present in at least 50 % of the quadrats in at least one of
the vegetation types. The 60-quadrat and 60-species
matrix configuration is coincidental. Environmental data
include records of landscape position, grazing condi-
tion, soil texture, soil pH and soil macro and micro
nutrients. The complete data set is in Pillar (1988).

Relevé groups are defined a posteriori on the basis of
environmental factors. We use landscape position to
classify the quadrats into four groups (flat top, convex
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(Iteration 1, observed data)

Factor X 1 2 1 1 2 2 2
Factor Y 1 1 2 1 2 1 2
Relevés 1 2 3 4 5 6 7

1   0 Is  ≥ Qb

2 193   0 Sum of squares observed?
3 220 259   0 Qb|X+Y 355.93 yes
4 282 267 292   0 Qb|X 106.01 yes
5 209 188 241 303   0 Qb|Y 128.93 yes
6 135  92 207 273 176   0 Qb|XY 120.99 yes
7 262 285 210 180 281 229   0 Qw|X+Y 327.50 not tested

Qt 683.43 not tested
(Iteration 2)

Factor X 1 2 1 1 2 2 2
Factor Y 1 1 2 1 2 1 2 Is  ≥ Qb

Relevés 1 5 4 2 6 7 3 Sum of squares observed?
1   0 Qb|X+Y 342.93 no
5 209   0 Qb|X 100.10 no
4 282 303   0 Qb|Y 71.59 no
2 193 188 267   0 Qb|XY 171.24 yes
6 135 176 273  92   0 Qw|X+Y 340.50 not tested
7 262 281 180 285 229   0 Qt 683.43 not tested
3 220 241 292 259 207 210   0

… repeat the steps a large number of times.

In a run with 1000 iterations the results were:

Observed sum of squares Proportion of iterations
in which Qb° ≥ Qb

Qb|X+Y 355.93 0.322
Qb|X 106.01 0.580
Qb|Y 128.93 0.273
Qb|XY 120.99 0.378
Qw|X+Y 327.50 not tested
Qt 683.43 not tested

Fig. 3. Ordination diagram of Campos grassland relevés (Pil-
lar 1988). The ordination is based on PCOA of a matrix of
Euclidean chord distances. Numbers in the scattergram iden-
tify landscape classes: 1 = flat top; 2 = convex slope; 3 =
concave slope; 4 = lowland. Species most correlated with axis
1 are Paspalum notatum and Facelis retusa, increasing from
left to right, and Eleocharis glauco-virens, increasing from
right to left. On axis 2, Andropogon lateralis, Eryngium
horridum and Vernonia nudiflora decrease from bottom to
top. Less grazed relevés are in the lower part of the diagram,
more grazed ones are in the upper part.

Fig. 2. Example with artificial data in a multifactor design to
illustrate the randomization process under random partitions.
In iteration 1 the squared distance matrix is arranged as ob-
served. In the successive iterations the relevés are permuted at
random and the dissimilarities rearranged accordingly, but the
group memberships remain at the same positions in the table.
At each iteration the test criterion is recomputed.

slope, concave slope, lowland) and grazing intensity to
classify the same quadrats into two groups (low, high).
Exploratory ordination of relevés (Fig. 3) reveals trends
associated with these factors. The question asked is if
compositional differences are independent of landscape
position and grazing intensity. The randomization is
performed under random partition hypothesis. The al-
gorithm computes sum of squares and probabilities based
on the same matrix of chord distances that produced the
ordination. We present these in Table 1. The results
indicate a significant difference of vegetation composi-
tion between relevé groups defined by landscape and
grazing, both jointly and independently. The landscape
× grazing interaction term, however, and one of the
orthogonal contrasts (flat top versus convex slope) are
not significant.

Discussion

We have discussed randomization testing, described
a method for group comparisons and have given an
example from phytocoenology. Our method supports
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congruence ρ (D; ∆) defined as a matrix correlation,
similarly as in Sokal & Rohlf (1962) and Orlóci & Pillar
(1989). Given n pairs of vegetation and environmental
relevés, D defines vegetation structure, as an n × n
matrix of dissimilarities, and ∆ defines the underlying
environmental structure, also as an n × n matrix of
dissimilarities. In agreement with the Null Hypothesis
of no structural congruence, the reference set contains
n! permutations of the n vegetation relevés among the n
sites. The permutation of environmental relevés is un-
necessary. Therefore, the reference set is equivalent to
the one defined under the random partition hypothesis.

While the reference sets are equivalent in Mantel’s
test and in the random partition test, the test criteria
differ. While in the latter Qbs measure dispersion be-

Table 2. Randomization test of the independence of floristic composition from landscape in Campos grassland. Data contain 16
relevés, which are pooled relevés taken from the ones used in Table 1 that are at the same landscape position and in the same elevation
gradient. Pooling the relevés aims at isolating landscape from a possible confounding effect of spatial proximity. Some probabilities
P(Qb° ≥ Qb) differ from Table 1 for the same comparisons, but not enough to change the conclusions there stated about the
association of landscape and vegetation. Probabilities were generated by 1000 iterations.

Source of variation Sum of squares (Qb)  (P(Qb° ≥ Qb)

Between groups by landscape 4.458 0.001
Contrasts:

1 1 1 –3 2.886 0.002
–1 –1 2 0 1.324 0.014
1 –1 0 0 0.2484 0.931

Within groups by landscape 3.304

Total 7.762

hypothesis testing in a specific case that could not have
been done as well and as relevantly without randomi-
zation.

The method involves permutations of the relevés
among the group memberships. It is clear that such a
permutation is equivalent to permuting the relevés among
the sites, but keeping the group memberships of the sites
unchanged. It is also true that the test performed has
analog in Mantel’s (1967) test of matrix correspondence
when the resemblance matrices are defined by two sets
of variables. Legendre & Fortin (1989) tested vegeta-
tion-environment associations on this basis. One of the
sets in their case is from the vegetation and the other
from the environment or from geographical coordinates.
A suitable test criterion in the Mantel test is structural

Table 1. Randomization test of the independence of floristic composition from landscape and grazing intensity in Campos grassland.
See data description in the main text. Relevés (60) are assigned to groups defined by the combination of four landscape categories and two grazing
intensity levels. Probabilities  (P(Qb° ≥ Qb), generated in 1000 iterations, indicate how extreme is the observed sum of squares under the Null
Hypothesis. The analysis is akin to a conventional analysis of variance, differing only in the way probabilities are obtained. The sum of squares are
computed from chord distances of relevés based on 60 species. The probability  (P(Qb° ≥ Qb) = 0.001) found for the sum of squares between groups
defined by landscape and grazing indicates the rejection (α ≤ 0.05) of the Null Hypothesis. Contrast coefficients specify which landscape classes (flat
top, convex slope, concave slope, lowland) are compared. The contrasts are orthogonal, thus their sum of squares add to the sum of squares between
groups by landscape (6.270 + 2.419 + 0.8326 = 9.521). The probabilities for contrasts show significant compositional differences (α ≤ 0.05) of
lowland relevés versus the other groups taken together (1st contrast), and of concave slope relevés versus flat top plus convex slope relevés (2nd
contrast), but not of flat top versus convex slope relevés (3rd contrast). Variation related to grazing intensity is also significant (α ≤ 0.05), but the
interaction of landscape and grazing is not (P(Qb° ≥ Qb) = 0.884). The between groups sum of squares terms are additive; the Qb for landscape plus
the Qb for grazing and the interaction add to the Qb for grazing and landscape taken jointly (9.521 + 3.271 + 1.506 = 14.30). The total sum of squares
is the sum of the within plus the between groups by grazing and landscape taken jointly (24.18 + 14.30 = 38.48). The vegetation variation explained
by the factors is 37% (100 × 14.30 / 38.48) of the total.

Source of variation Sum of squares (Qb)  (P(Qb° ≥ Qb)

Between groups by landscape/grazing 14.30 0.001
Between groups by landscape 9.521 0.001

Contrasts:
1 1 1 –3 6.270 0.001

–1 –1 2 0 2.419 0.002
1 –1 0 0 0.8326 0.181

Between groups by grazing 3.271 0.001
Interaction landscape × grazing 1.506 0.884

Within groups by landscape/grazing 24.18
Total 38.48
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tween groups, in the former ρ (D; ∆) measures correla-
tion. Interestingly, the factors that define the groups in
the computation of the Qbs could define ∆. The advan-
tage would be that the test would not be limited to
categorical factors. The case would then be handled as
has been done in Smouse et al. (1986). Along similar
lines are various applications of canonical analysis in
Gittins (1979, 1985) and ter Braak (1986, 1994), albeit
not in the context of randomization tests as in Borcard et
al. (1992) and ter Braak & Wiertz (1994).

The approach based on Qb has advantages. Unlike
ρ (D; ∆), it is partitionable into components. One of
these, the interaction term, adds an extra dimension to
the partitioning in that it allows the complete evaluation
of multifactor designs. This puts the analysis on a par
with the factorial analysis of variance. Furthermore, Qb

allows contrasts to be defined and tested and yet the
algorithm is not complicated.

If the resemblance matrix does not have Euclidean
metric properties, other test criteria could still be used in
some instances, such as an average dissimilarity be-
tween groups (Pillar & Orlóci 1993a:108) or our Qw

taken as a measure of within group dispersion, but these
are not partitionable.

Some precautions are needed when tests involve
survey data. First, the nature of the data excludes draw-
ing valid conclusions about causality. Second, even
though significance is indicated, other unknown factors
may account for a large portion of total variation. Upon
examination of the sum of squares in Table 1, we see that
vegetation variation explained by landscape and grazing
combined is only 37 %. This is indicating that in addi-
tion to landscape and grazing, there must be other fac-
tors influencing vegetation variation. Related to this we
refer to Quinn & Dunham (1983) for further comments
on the hypothesis testing controversy.

Another important point is that if relevés from sites
that are closer in space and in the same group tend to be
less dissimilar, there will be a confounding effect of
environmental factors and biological processes, such
as the ones related to plant dispersion. In this case
spatial autocorrelation may be significant and the prob-
abilities will likely be underestimated, which may cause
misleading conclusions on effects of environmental
factors. Smouse et al. (1986), Legendre & Fortin (1989),
Oden & Sokal (1992), Sokal et al. (1993), Legendre
(1993) address the problem of spatial autocorrelation
by means of a partial Mantel test and canonical corre-
lation. We believe that the confounding effect of spatial
autocorrelation can be alleviated by averaging the
relevés in the same group when they are at close spatial
proximity. It can be argued that autocorrelation affects
the results in the Campos example in the sense that
landscape and spatial proximity could be confounded.

As a precaution, in a second run we pooled relevés at
similar landscape positions and in the same elevation
gradient, which resulted in a new data set. This does not
change the conclusions, which suggests the lack of
confounding effects (Table 2). This solution would not
be useful, however, if each group of relevés were
representing a geographically contiguous area. Legendre
et al. (1990) and Sokal et al. (1993) offer a method
based on a contiguity-constrained permutation of units
among groups, but the method requires evenly spaced
relevés and a regular number of edges per contiguous
area. A restricted randomization of this type could be
implemented using the same partitionable test criterion
we use.

It should be noted that perceptions of the vegetation
phenomena tend to be context sensitive. Conclusions
based on phytocoenological analysis are always de-
pendent on a number of decisions about vegetation
sampling: scale, size, unit shape and size (Kenkel et al.
1989). Also, the taxonomy delimiting populations mat-
ters (Pillar & Orlóci 1993b) and the choice of data
transformation and resemblance measure is important.
Therefore, the probabilities generated in randomization
will also be sensitive to this choices.
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