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Abstract

Beta diversity can be defined as the variability in species composition among sampling

units for a given area. We propose that it can be measured as the average dissimilarity

from individual observation units to their group centroid in multivariate space, using an

appropriate dissimilarity measure. Differences in beta diversity among different areas or

groups of samples can be tested using this approach. The choice of transformation and

dissimilarity measure has important consequences for interpreting results. For kelp

holdfast assemblages from New Zealand, variation in species composition was greater in

smaller holdfasts, while variation in relative abundances was greater in larger holdasts.

Variation in community structure of Norwegian continental shelf macrobenthic fauna

increased with increases in environmental heterogeneity, regardless of the measure used.

We propose a new dissimilarity measure which allows the relative weight placed on

changes in composition vs. abundance to be specified explicitly.
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I N TRODUCT ION

Whittaker (1960) originally proposed partitioning diversity

into alpha, beta, and gamma components to characterize

different aspects or levels of diversity. Alpha diversity (a) is
commonly measured as the number of species in a single

sampling unit, while gamma diversity (c) is generally defined
as the overall number of species within a defined

geographical area. Beta diversity can be measured in many

different ways (Koleff et al. 2003; Magurran 2004). Whit-

taker’s (1960, 1972) original measure [bW ¼ c=�a or

bW ¼ ðc=�aÞ � 1], the proportion by which a given area

is richer than the average of samples within it, has been one

of the most frequently used measures of beta diversity

(Koleff et al. 2003).

We consider that beta diversity can be measured as the

variability in species composition among sampling units for

a given area at a given spatial scale. We propose that beta

diversity for a group of units sampled from a given area can

be measured as the average distance (or dissimilarity) from

an individual unit to the group centroid, using an

appropriate dissimilarity measure. The centroid must be

defined in the principal coordinate space of the dissimilarity

measure chosen. This concept of beta diversity is quite

flexible, because it can be based on any chosen ecologically

meaningful dissimilarity measure. It also has the added

advantage over Whittaker’s original measure in that it can be

used to test for differences in beta diversity among areas or

groups, through a multivariate test for homogeneity in

dispersions (Anderson 2006). However, this approach does

require the definition of what is meant by �variability in

community structure� (dictated by the choice of transfor-

mation and dissimilarity measure) to be carefully articulated.

The most widely used ecological measures of composi-

tional dissimilarity include the classic measures described by

Jaccard (1900) and Sørensen (1948) (e.g. Chao et al. 2005).

Beta diversity has also been measured using dissimilarity

measures which include relative abundance information,

such as the Bray–Curtis measure (Bray & Curtis 1957) (e.g.

Ellingsen & Gray 2002; see also Magurran 2004; Olszewski

2004). However, an important ecological issue is to

understand how much of the dissimilarity is driven by

compositional difference and how much is driven by

differences in relative abundance, which is difficult to

ascertain for the Bray–Curtis and related measures. We

propose a new dissimilarity measure which weights an
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order-of-magnitude change in abundance the same as a

change in species composition.

Our purposes here are (i) to demonstrate how multiva-

riate dispersion can be used as a measure of beta diversity;

(ii) to demonstrate the test for differences in dispersion to

investigate differences in beta diversity among areas or

groups of sampling units; (iii) to outline the potential pitfalls

in extending the concept of beta diversity to include

abundances; and (iv) to propose a new dissimilarity measure.

We illustrate these concepts with two ecological exam-

ples. The first example examines the hypothesis of a

relationship between beta diversity of invertebrate assem-

blages inhabiting holdfasts of the kelp Ecklonia radiata (C.

Agardh) J. Agardh and increases in the size (volume) of the

holdfast habitat (Anderson et al. 2005a). The second

example examines the hypothesis that compositional het-

erogeneity (beta diversity) is related to environmental

heterogeneity in soft-sediment benthic assemblages from

the Norwegian continental shelf (Ellingsen & Gray 2002).

A TES T FOR HOMOGENE I T Y

Individual dissimilarities between pairs of sampling units do

not alone constitute a measure of beta diversity over a large

area. Although the average of all dissimilarities between pairs

of samples within an area can be calculated (e.g. Ellingsen &

Gray 2002), these individual values are not independent of

one another, which prevents a direct statistical test. Whit-

taker’s bW measures beta diversity for a given area, but does

not test for differences among different areas. We propose

that a test of the null hypothesis of no difference in beta

diversity among two or more areas can be obtained by

implementing the test for homogeneity of multivariate

dispersions (Anderson 2006) on the basis of an appropriate

measure of dissimilarity. Note that what concerns us here is

the structure within groups – the test says nothing about

potential differences in location among groups in multivariate

space, for which other tests are available (e.g. Clarke 1993;

Anderson 2001; McArdle & Anderson 2001).

The test for homogeneity of multivariate dispersions

(Anderson 2006) is a multivariate analogue to Levene’s

(1960) test and can be based on any dissimilarity measure of

choice. In essence, one calculates an F-statistic to compare

the average distance of observation units to their group

centroid (or spatial median), defined in the space identified

by the chosen dissimilarity measure. A P-value is then

obtained by permuting appropriate residuals: either least-

squares residuals (in the case of centroids) or least-absolute-

deviation residuals (in the case of spatial medians). Here, we

shall consider the test which uses distances to centroids and

obtains P-values using permutation of least-squares residu-

als, which was found to be quite robust and powerful under

various simulations (Anderson 2006).

An important complexity concerns the calculation of

centroids for measures which are not Euclidean embeddable

(Gower & Legendre 1986). Many commonly used dissim-

ilarity measures (Bray–Curtis, Jaccard, etc.) are not embed-

dable in Euclidean space [i.e. they produce negative

eigenvalues in a principal coordinate analysis (PCO), see

pp. 432–438 in Legendre & Legendre 1998 for details]. For

analyses based on Euclidean distance, the centroid is simply

the arithmetic average for each variable. However, if the

multi-species space is to be defined using a dissimilarity

measure such as Jaccard’s (1900), then the centroid cannot

be calculated in this way and is not directly obtainable in the

space of the original species variables. In this case, what is

necessary before proceeding is to place the observations

into a Euclidean space which preserves the original

dissimilarities among them. This is achieved using PCO

(Gower 1966). Specifically, the Euclidean distance between

two points in the space defined by the principal coordinate

axes is equivalent to the original dissimilarity between those

two points using the chosen dissimilarity measure on the

original variables (Gower 1966; Legendre & Legendre 1998).

The result holds for non-Euclidean embeddable dissimilar-

ities as well. For more details on the test and the underlying

calculations, see Anderson (2006).

DESCR I P T ION OF SOME D I S S IM I LAR I T Y

MEASURES

The Jaccard (1900) and Sørensen (1948) measures were

originally described as similarities, but are given here in

terms of their complement as dissimilarities. The Jaccard

dissimilarity between two sampling units is

dJ ¼ ðb þ cÞ=ða þ b þ cÞ; ð1Þ

where a is the number of species shared, b the number of

species in unit 1 that do not occur in unit 2, and c the

number of species in unit 2 that do not occur in unit 1.

Thus, it is the proportion of unshared species out of the

total number of species recorded in the two units. The

Sørensen measure, also described by Dice (1945), is

dS ¼ ðb þ cÞ=ð2a þ b þ cÞ: ð2Þ
It is monotonically related to the Jaccard measure (with

dS < dJ); however, the Sørensen measure gives double value

to shared species. The biggest difference between (1) and (2)

will occur when a is in the range from (b + c) to 2(b + c).

Moreover, when Whittaker’s measure (bW) is calculated

between a single pair of units, then bW ¼ (2–1/dS) (Vellend

2001). Although there are many other measures based on

presence/absence data (Legendre & Legendre 1998), dJ and

dS are favoured in ecology because they exclude joint

absences and can be interpreted in a probabilistic framework

(Chao et al. 2005).
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Many dissimilarity measures also incorporate relative

abundance information (Legendre & Legendre 1998). We

shall focus on those considered to be extensions of either

the Jaccard or Sørensen measures. A modified version of the

Sørensen index (Magurran 2004), described by Bray &

Curtis (1957) and also earlier by Steinhaus (Motyka 1947)

and Odum (1950), is now one of the most commonly used

measures in ecology (Clarke & Warwick 2001):

dBC ¼
Pp

k¼1 x1k � x2kj jPp
k¼1 ðx1k þ x2kÞ

; ð3Þ

where x1k is the abundance of species k in sampling unit 1,

x2k the abundance of species k in sampling unit 2, and p the

total number of species recorded across both units. If the

variables differ in their scales, then a transformation of

abundances (e.g. to square-roots or fourth-roots) is often

applied first (Clarke & Green 1988). The Bray–Curtis

measure varies from 0 to 1 and if data are reduced to

presence/absence, then dBC ¼ dS.

Gower (1971, 1987) defined a flexible dissimilarity

measure as follows:

dG ¼
Pp

k¼1 wk x1k � x2kj j=RkPp
k¼1 wk

; ð4Þ

where Rk is the range of the kth species and wk is an op-

tional weight that can be given to each species (having a

default value of wk ¼ 1). Dividing differences by the range

(or SD) is optional; it is intended to eliminate differences in

scale among variables. A version of Gower’s measure which

excludes joint absences can be obtained by setting wk ¼ 0,

whenever x1k ¼ x2k ¼ 0 and wk ¼ 1 elsewhere. When

calculated on presence/absence data, dG excluding double

zeros ¼ dJ.

The Jaccard measure is also interpretable as the probab-

ility that two species, one drawn at random from each

sample, will not be shared. Taking this probabilistic

approach, an abundance-based Jaccard measure was pro-

posed by Chao et al. (2005), as

dChJ ¼ 1�UV =ðU þV �UV Þ; ð5Þ

where U is the sum of the proportional abundances of

species in sampling unit 1 that are shared with unit 2, and V

is the sum of the proportional abundances of species in

sampling unit 2 that are shared with unit 1. That is,

U ¼
Xp

k¼1

wk
x1k

x1þ
;

where x1+ is the sum of the abundances for all species in

sampling unit 1 and wk ¼ 1 if species k occurs in both unit

1 and unit 2 (i.e. is shared) or else wk ¼ 0. The quantity V is

defined similarly, but for sampling unit 2. The measure dChJ
is interpretable as the probability that two individuals, one

drawn at random from each sample, will not belong to a

shared species. It takes values from 0 to 1 and dChJ ¼ dJ for

presence/absence data. Chao et al.�s (2005) further contri-

bution includes estimation of unseen shared species in order

to reduce the sampling bias caused by not being able to

census the entire community. This bias-corrected version

(which we shall not describe here, see Chao et al. 2005) we

shall refer to as dChJB.

POTENT I A L P I T FA L L S IN EXTEND ING THE

CONCEPT OF BE TA D I V ERS I T Y TO INC LUDE

RE LAT I V E ABUNDANCE IN FORMAT ION

Many of the dissimilarity measures that ecologists commonly

use on abundance data include intrinsic standardizations by

row sums or column sums (e.g. Bray–Curtis, Canberra, chi-

squared, CY dissimilarity, Hellinger, Orlóci’s chord, Kulczyn-

ski, etc.). Indeed, Legendre & Gallagher (2001) have

demonstrated how many of these distance measures can be

obtained directly by calculating Euclidean distances on

variables that have been standardized or transformed in some

way by row sums, column sums, or both. Gower’s measure

standardizes by the range for each variable and probabilistic

measures, such as dChJ, also have intrinsic standardizations.

Generally, such standardizations affect patterns of relative

dispersion in ways that cannot easily be either predicted or

interpreted by reference to the original variables.

Measures that do not have intrinsic standardizations, such

as the Manhattan measure or the Euclidean distance

measure, are more transparent in that they model raw

abundance information directly. However, these measures:

(i) do not exclude joint absences, and (ii) are very sensitive

to differences in the scale of the variables (Legendre &

Legendre 1998; Clarke & Warwick 2001). Furthermore,

measuring variability in the counts of species abundances,

even for univariate data, may not be best understood by a

statistical measure of either variance or standard deviation

on raw abundance values, per se (e.g. Gaston & McArdle

1994). In particular, counts of species abundances have

intrinsic mean–variance relationships: increases in mean

values are generally accompanied by increases in variance

(dispersion) too. This is the basis of Taylor’s power law

(Taylor 1961; see also McArdle et al. 1990; Gaston &

McArdle 1994). To examine heterogeneity in abundances,

we should therefore ultimately seek to distinguish between a

fundamental difference in variability (such as a shift in

underlying mean–variance relationships) vs. a difference in

variances caused by a simple change in mean values.

A NEW PROPOSED D I S S IM I LAR I T Y MEASURE

The following modification to Gower’s (1971, 1987)

dissimilarity measure can be used which explicitly weights
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an order-of-magnitude change in abundance the same as a

change in species composition (from 0 to 1). First, values of

x are transformed to a new multiplicative scale which makes

a simple allowance for zeros, as follows: let x¢ ¼
log10(x) + 1, unless x ¼ 0, in which case x¢ ¼ 0. Thus,

for x ¼ {0, 1, 10, 100, 1000}, x¢ ¼ {0, 1, 2, 3, 4}. Then, a

modified Gower dissimilarity measure is

dMG ¼
Pp

k¼1 wk x 01k � x 0
2k

�� ��
Pp

k¼1 wk
; ð6Þ

where the weights wk are used to provide the desired

exclusion of joint absences by setting wk ¼ 0, whenever

x1k ¼ x2k ¼ 0 and wk ¼ 1 elsewhere. Note that dMG will

generally be non-Euclidean and also does not include any

intrinsic standardization by the range, as was specified for

dG.

Although not a unitless measure, this dissimilarity

measure has the advantage of being directly interpretable

as the average change in orders of magnitude per species

between two sampling units. Note that the above

transformation is not the same as log(x + 1). The base

of the logarithm used for the transformation can also be

altered. For example, using log2 would weight a compo-

sitional change equal to a doubling in abundance (i.e. for

x ¼ {0, 1, 2, 4, 8}, transformed values would be x¢ ¼ {0,

1, 2, 3, 4}). The emphasis placed on compositional

change vs. changes in abundance is specified directly by

the choice in the base of the logarithm. For presence/

absence data, dMG ¼ dJ.

Unlike dBC or dChJ, dMG does not have an upper bound.

Although Clarke & Warwick (2001) suggested that an

ecological dissimilarity measure should reach a maximum

when there are no species in common, a common criticism

of dBC is its lack of discrimination near its upper bound (Cao

et al. 1997) and its erratic behaviour for sparse data (Clarke

et al. 2006). However, dMG does not suffer from these

problems.

The proposed measure can easily be partitioned into a

component driven by compositional differences (dJ) and a

component driven by order-of-magnitude changes in

abundance (dMG – dJ). Furthermore, if raw values of x are

used instead of the transformed values x¢, then the measure

would simply be the Manhattan (city-block) measure, but

with weights to exclude double zeros:

dManx ¼
Pp

k¼1 wk x1k � x2kj jPp
k¼1 wk

: ð7Þ

Legendre & Legendre (1998) described this measure as a

modification of Czekanowski’s (1909) mean character

difference to exclude double zeros. Weights can also be

introduced in this manner to exclude double zeros for the

Euclidean distance measure (dEucx):

dEucx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
k¼1 wkðx1k � x2kÞ2

q
Pp

k¼1 wk
: ð8Þ

Thus, we can articulate a series of distance measures that

provide a continuum in emphasis from pure species

composition through to (virtually) pure relative abundance

information, as follows: dJ, dMG, dMG2, dManx, dEucx, where

dMG uses log10 and dMG2 uses log2 for the transformation

(and clearly other choices for the base of the log can also be

used).

ECOLOG I CAL EXAMPLES

Beta diversity in New Zealand kelp holdfast assemblages

Eighty holdfasts of the kelp, E. radiata, were collected from

subtidal forest stands (c. 11–15 m depth) along the north-

eastern coast of New Zealand in 2002 (Anderson et al.

2005a). Invertebrates inhabiting each holdfast (either

attached to haptera or retained on a 0.5 mm sieve) were

identified and enumerated, resulting in a total of 351 taxa.

The volume of each holdfast was also measured (in mL)

using water displacement.

The structure of holdfast assemblages has a significant

relationship with the volume of the holdfast (e.g. Smith et al.

1996). As the plant grows, the number of species and the total

number of organisms inhabiting the holdfast increase

(Anderson et al. 2005a). Naturally, the size of the sampling

unit is also expected to affect assemblage structure (Cao et al.

2002; Mac Nally et al. 2004). Explicit models of changes in

community structure with holdfast volume, including species

accumulation curves, are given elsewhere (Anderson et al.

2005a,b). Here, we wished to examine patterns of variability

(dispersion) in assemblage structure for holdfasts of different

volume. Thus, the 80 holdfasts were allocated into four

groups of 20 on the basis of their rank volume (size). The

resulting groups were (1) 36–76 mL, (2) 82–110 mL, (3) 114–

150 mL, and (4) 150–285 mL.

Tests of homogeneity in multivariate dispersions were

done based on dJ, dMG, dMG2, dManx and dEucx. These

measures represent a spectrum in the amount of emphasis

placed on species composition vs. relative abundance, and

none of them include any extra intrinsic standardizations by

row sums, column sums or ranges. For comparison, we also

did analyses based on dChJ, dChJB and on dBC after first

applying various transformations to the data: none, square-

root or presence/absence, with the latter being equal to dS.

Bray–Curtis, when used with different transformations, is

also considered to be a method of weighting the relative

importance of rare vs. common (or abundant) species in

community analysis (e.g. Clarke & Green 1988).

Tests done using either dJ or dS, emphasizing composi-

tional differences, indicated that there was significantly
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greater beta diversity (dispersion) among small holdfasts

than among larger ones (Table 1, Figs 1a,b and 2a,e).

Average dissimilarities to centroids based on either the

Jaccard or Sørensen dissimilarity measures have a clear

correspondence to Whitakker’s bW (Table 2). In contrast,

analyses emphasizing differences in relative abundances

(dManx), indicated the opposite trend: significantly greater

variation among large holdfasts compared with smaller ones

(Table 1, Figs 1c and 2d). Thus, variation in species

composition is greater in smaller holdfasts, while variation

in relative abundances is greater in larger holdfasts.

Although the analysis based on dEucx yielded a similar

pattern to that seen for dManx (Figs 1c and 3a), the test did

not detect statistically significant heterogeneity in disper-

sions (Table 1).

The analysis based on the modified Gower measure,

which explicitly weights a compositional change equal to an

order-of-magnitude change (dMG) or a doubling (dMG2) in

abundance, indicated that there were no significant differ-

ences in dispersion among the four groups (Table 1, Figs 1b

and 2b,c).

A second-stage non-metric multi-dimensional scaling

(MDS) plot (Somerfield & Clarke 1995) was used to

compare the various dissimilarity measures. This technique

allows different analytical approaches to be compared, by

calculating the Mantel correlations between every pair of

dissimilarity matrices. This matrix of correlations is then

input as a new matrix of similarities into the MDS algorithm.

Here, we used Pearson correlations among the distance

matrices (rather than Spearman rank correlations), because

we wished to consider two measures to be more similar if

they were linearly related, as opposed to simply related in

their rank order. The pattern obtained shows the gradient in

emphasis on changes in species composition through to

changes in relative abundance (from left to right) with the

use of different dissimilarity measures (Fig. 3a).

Results obtained using dBC on untransformed or square-

root transformed data indicated that there was significantly

greater variation in smaller holdfasts compared to larger

ones, although the size of the effect was not as large as for

presence/absence data (Table 1, Fig. 1a and 2f,g). The

analysis using untransformed data may emphasize abundant

taxa more than rare taxa; however, the relative contribution

of species composition vs. relative abundance towards this

measure is unclear, because dBC includes an intrinsic

standardization by the sum of the abundances in the two

Table 1 Results of tests for homogeneity of multivariate dispersions for each example data set on the basis of each of several dissimilarity

measures

Distance measure

Holdfast data Macrobenthos data

F P-value F P-value

Sørensen (Bray–Curtis, presence/absence) 15.392 0.0001 53.944 0.0001

1 2 3 4 3 5 4 2 1

Bray–Curtis, square-root transformation 11.613 0.0001 56.764 0.0001

1 2 3 4 3 5 4 2 1

Bray–Curtis, no transformation 4.479 0.0107 38.447 0.0001

1 2 3 4 3 5 2 4 1

Jaccard 15.630 0.0001 49.778 0.0001

1 2 3 4 3 5 4 2 1

Modified Gower (base 10) 1.512 0.2449 73.037 0.0001

3 2 5 4 1

Modified Gower (base 2) 2.416 0.0850 87.506 0.0001

3 2 5 4 1

Manhattan, excluding joint absences 5.626 0.0036 26.077 0.0001

4 3 2 1 2 3 1 5 4

Euclidean, excluding joint absences 2.416 0.2146 6.752 0.0011

2 1 3 5 4

Chao’s abundance-based Jaccard 13.644 0.0001 55.102 0.0001

1 2 3 4 3 5 4 2 1

Chao’s abundance-based Jaccard 6.279 0.0010 47.851 0.0001

1 2 3 4 3 5 4 2 1

Where there was a statistically significant overall F-ratio comparing groups (P < 0.05, 9999 permutations), pairwise comparisons were done.

Numbers correspond to areas 1–5 for the macrobenthos data and to groups 1–4 for the holdfast data, as described in the text.

Numbers are given in decreasing order of average dispersion, and underlining bars indicate groups that were not statistically significantly

different (P > 0.05).
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sampling units (3). Chao’s abundance-based Jaccard meas-

ure (either in raw or bias-corrected form) also clearly

emphasized compositional structure (Fig. 3a, Table 1),

although high stress (> 0.20) precludes close interpretation

of the MDS plot (Fig. 2h).

Relating beta diversity to environmental heterogeneity on
the Norwegian continental shelf

Samples of soft-sediment macrobenthic organisms were

obtained from 101 sites occurring in five large areas along a

transect of 15� of latitude, collected in 1996, 1997 and 1998

(Ellingsen & Gray 2002). The number of sites in each area

was 16, 21, 25, 19, and 20, respectively, in a sequence from

the most southern area (area 1) to the northernmost (area 5).

At each site, five replicates were taken with a 0.1 m2 van

Veen grab, and these were sieved on a 1 mm sieve to

provide a sample of the macrobenthos. There were 809 taxa

overall, and analyses were done on abundance data pooled

over the five grabs from each site. The upper 5 cm of one

additional grab at each site was also sampled to measure

environmental variables, which included: median, SD,

skewness and kurtosis of sediment grain size, percentage

silt and clay (fraction < 0.063 mm), total organic matter (%)

and water depth (m) (Ellingsen & Gray 2002).

First, we tested the null hypothesis of homogeneity in the

multivariate dispersions among the five areas in terms of the

environmental variables, based on Euclidean distances to

centroids for normalized data. We also tested the null

hypothesis of homogeneity in the multivariate dispersions

among the five areas on the basis of the Sørensen

dissimilarity measure for the biotic variables. We then

related the environmental to the biological measures of

distances to centroids directly.

There were significant differences in environmental

heterogeneity among the five areas (F ¼ 24.67,

P < 0.001). Area 3 had significantly greater environmental

variation, while area 1 had significantly lower variation than

any of the other areas (Fig. 4). There were statistically

significant differences in environmental heterogeneity

between every pair of areas (P < 0.001), except for area 2,

which did not differ significantly from either area 4 or area 5

(pairwise comparisons, P > 0.13). These results coincide

with patterns in values of coefficients of variation for each

environmental variable (Ellingsen & Gray 2002).

The analysis of the biological data effectively mirrored the

results obtained using the environmental data. There was

general agreement in the rank order of measures of beta

diversity, using bW (see Ellingsen & Gray 2002) or using

distances from centroids on the basis of either the Sørensen

(�zS) or the Jaccard (�zJ) measures (Table 2). The test revealed

significant differences in beta diversity among the five areas,

using either Sørensen or Jaccard: area 3 demonstrated the
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Figure 1 Average distance to centroid (± 1 SE, n ¼ 20) of New

Zealand holdfast assemblages classified into each of four groups on

the basis of holdfast volume, using each of several dissimilarity

measures, as indicated. The modified Gower measure in panel b

was based on a log10 transformation.

Table 2 Average richness (�a), gamma diversity (c), beta diversity

[bW ¼ ðc=�aÞ � 1] and average distance from centroid on the basis

of the Sørensen (�zS) or Jaccard (�zJ) measures for (a) New Zealand

holdfast data and (b) Norwegian continental shelf data

�a c bW �zS �zJ

(a) New Zealand holdfasts

Volume 1 67 252 2.8 0.371 0.480

Volume 2 82 271 2.3 0.330 0.444

Volume 3 91 274 2.0 0.309 0.425

Volume 4 105 290 1.8 0.282 0.397

(b) Norwegian continental shelf

Area 1 66 177 1.7 0.361 0.246

Area 2 101 307 2.0 0.425 0.312

Area 3 83 477 4.7 0.564 0.487

Area 4 72 297 3.1 0.463 0.351

Area 5 106 405 2.8 0.470 0.359
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greatest beta diversity, followed by areas 5, 4 and 2, which

did not differ significantly, followed by area 1 (Table 1,

Fig. 4). Furthermore, there was a clear direct relationship

between the distances to centroids based on the biological

compositional data vs. the distances to centroids based on

the environmental data (Fig. 4). This is in accordance with

the results obtained by Ellingsen & Gray (2002), using the

average of all dissimilarities (square-root transformed Bray–

Curtis) between pairs of samples within each area, although

in their study no direct statistical test on the values was

performed. Some sites in area 3 were characterized by big

distances from the area centroid for the environmental data,

but not for the biological data (i.e. observations larger than

three on the x-axis in the top of Fig. 4). Closer inspection

revealed that all of these sites except one occurred in deep

water (> 300 m), and also contained a high percentage of

silt-clay and total organic matter. However, these sites did

not correspondingly result in an unusually high biological

deviation from the �typical� assemblage. Despite such

individual anomalies, the overall pattern of relationship

between beta diversity and environmental heterogeneity was

clear (Fig. 4).
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Figure 2 Non-metric MDS plots of New

Zealand holdfast assemblages on the basis of

each of several choices of transformation

and dissimilarity measure, as indicated.

Numbers indicate the volume class of each

holdfast: 1, 36–76 mL; 2, 82–110 mL; 3,

114–150 mL; 4, 150–285 mL.
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We next analysed the Norwegian data set using dMG,

dMG2, dManx, dEucx, dEuc, dChJ, dChJB and dBC with different

transformations, as for the holdfast data. For these data, the

choice of transformation and dissimilarity measure had very

little effect on the general outcome of the analysis (Table 1).

In essence, there was generally significantly larger dispersion

in area 3 and significantly smaller dispersion in area 1

compared with the other three areas. Thus, regardless of

whether one considers variation in species composition or

in abundance, the areas with greater environmental hetero-

geneity also had the greatest multivariate dispersion.

Differences in sample size and in the area sampled could

have played a role in determining results (Cao et al. 2002;

Mac Nally et al. 2004). However, there were little or no

differences between results obtained using dChJB (which

substantially reduces sample-size bias) and dChJ. In fact, the

linear correlation between these two dissimilarity matrices

was r ¼ 0.96 for the Norwegian data and r ¼ 0.85 for the

holdfast data, suggesting that sample-size issues were not

the primary drivers behind the patterns observed.

Interestingly, the analysis placing a change in species

composition on an equal footing with a doubling in

abundance (dMG2) resulted in the strongest measured effects

(the greatest value for the F-ratio, Table 1). This contrasts

with the results obtained for the holdfast data, where there

were effects in opposite directions for compositional vs.

relative abundance-based dispersion. These may have

effectively �cancelled each other out� when the modified

Gower measure was used for the holdfast data (Table 1).

Norwegian macrobenthos

New Zealand holdfasts

BCpa

BCsq

BCnt

J

MG

MG2

Manx

Eucx

Euc

ChJ
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Stress = 0.02
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J
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MG2
Manx

EucxEucChJ

Stress = 0.01

(a)

(b)

Figure 3 Second-stage MDS plots drawn on the basis of Pearson

product-moment correlations among several dissimilarity matrices

calculated on New Zealand holdfast data and on Norwegian

continental shelf data. ChJ, Chao’s abundance-based Jaccard; ChJB,

Chao’s abundance-based Jaccard with bias correction; J, Jaccard;

BCpa, Bray–Curtis on presence/absence data; BCsq, Bray–Curtis

on square-root transformed data; BCnt, Bray–Curtis on untrans-

formed data; MG, modified Gower measure using log10; MG2,

modified Gower using log2; Manx, Manhattan excluding double

zeros; Eucx, Euclidean excluding double zeros; and Euc, Euclidean

distance. Note: ChJB was not included in plot b as it caused the

MDS to collapse into two points, due to its lack of correlation

(near zero) with Eucx, Euc and Manx. However, the correlation of

ChJB to ChJ for these data was r ¼ 0.96.
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continental shelf. Regression line was drawn using reduced major
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Despite the differences inherent in these two data sets,

the second-stage MDS plot in both cases shows a gradient

in the change of emphasis from compositional to abun-

dance-based information from left to right on the plot

(Fig. 3). In either case, it is interesting to note that dBC on

untransformed data does not necessarily go very far along

this path and dChJ (or dChJB) does not fit easily into this

continuum, but appears even to go in a different direction

entirely.

D I SCUSS ION

As a single value calculated for a given area, Whittaker’s

(1960, 1972) bW does not allow statistical comparisons of

beta diversity between two or more areas. We propose that a

test for homogeneity in multivariate dispersions (Anderson

2006), when based on a suitable dissimilarity measure,

provides such a test. There is a clear correspondence

between the average distances to centroids based on

compositional dissimilarity (such as dS or dJ) and Whittaker’s

bW. This correspondence does not necessarily occur,

however, when multivariate dispersion is measured using

dissimilarities that include abundance information.

Beta diversity was positively related to environmental

heterogeneity for macrobenthic assemblages on the Nor-

wegian continental shelf. In fact, multivariate dispersion was

positively related to environmental heterogeneity regardless

of the dissimilarity measure or transformation used as the

basis for the analysis. In contrast, the dissimilarity measure

used had a strong effect on patterns of multivariate

dispersion for kelp holdfast fauna. There was high variation

in species composition during early stages of succession

(small holdfasts), while relative abundances of species were

more variable in larger holdfasts. This could have been a

simple consequence of Taylor’s power law (variance

increasing with the mean) or it could have been driven by

recruitment pulses or increasingly variable immigration or

extinction as the holdfast ages. The consequences of

intrinsic mean–variance relationships inherent in counts of

species abundances for measuring multivariate dispersion on

the basis of different dissimilarity measures is clearly an area

that warrants further research.

The test for homogeneity of dispersions (Anderson 2006)

can be calculated on the basis of any dissimilarity measure of

choice. In addition, a canonical partitioning of the variability

in any dissimilarity matrix also can be done (McArdle &

Anderson 2001; Legendre et al. 2005) and the sizes of

pseudo multivariate variance components can be calculated

from these (e.g. Anderson et al. 2005a), in a manner

analogous to the estimation of univariate variance compo-

nents (Searle et al. 1992). In addition, differences in the sizes

of such multivariate variance components can be tested

using bootstrapping procedures (A. Terlizzi, M.J. Anderson,

S. Fraschetti, L. Benedetti-Cecchi, unpublished data). While

all of these methodologies are useful in a general framework

for analysing multivariate variability, they do not necessarily

constitute analyses of beta diversity, per se.

Kiflawi & Spencer (2004) have shown how bW can be

expressed as an odds, and therefore how comparisons

between two areas can be done by building a confidence

interval for the odds ratio. Multiple pairwise tests using this

approach and also a measure of beta-diversity based on

rarefaction curves suggested by Olszewski (2004) were

recently used by Davis (2005) to compare and test for

differences in beta diversity across multiple areas in time and

space. These approaches are specific to particular measures,

however, and do not allow for a simultaneous test among

several areas (or times).

The test proposed here has a bit more flexibility and

allows ecologists to rigorously test hypotheses concerning

differences in multivariate dispersions (variability in com-

munity structure) or beta diversity (for species composition

data) among groups of multivariate samples. The potential

power of this method for investigating new and interesting

hypotheses in ecology comes, however, with a serious dose

of responsibility. It is very important to be clear about what

is meant by �variability in community structure� in a given

analysis. Do we mean variability in abundances? Variability

in the kinds of species present (beta diversity)? Variability in

their proportions? The analysis can be based on any

dissimilarity measure, but ecological interpretations can be

made only with care. Transformations also have strong

impacts on patterns and results.

It is generally recommended, for the multivariate analysis

of ecological species abundance data, that the data be

transformed (e.g. to square-roots or logs) in order to reduce

the influence of very abundant species (e.g. Clarke & Green

1988). Such transformations are often used in univariate

analysis in order to fulfil the assumption of homogeneity of

variances (e.g. Underwood 1981; McArdle & Anderson

2004). Such transformations are called �non-affine� in that

they do not preserve the collinearity (hence straightness or

parallelism) in the system. The effects of non-affine

transformations occur for multivariate data, just as they do

for univariate data. Therefore, comparisons of multivariate

dispersions after transforming the data must be interpreted

with this in mind, particularly if there is any evidence for

differences in means (locations) among groups.

Although the effects of transformations are relatively well

understood, at least for univariate analysis, the effect of

using different dissimilarity measures on patterns of

multivariate dispersions has so far been completely over-

looked. Most of the literature on distance measures

concentrates on whether particular distance or dissimilarity

functions fulfil various mathematical properties such as

metricity (e.g. Gower & Legendre 1986), whether they

Multivariate dispersion as beta diversity 691

� 2006 Blackwell Publishing Ltd/CNRS



correspond to some particular notion of simulated �ecolog-
ical distance� (e.g. Faith et al. 1987), whether they are related

to hypothetical environmental gradients (e.g. Legendre &

Gallagher 2001), whether they are sensitive to specific kinds

of changes in assemblages (e.g. Hajdu 1981; Cao et al. 1997),

whether or not they include or exclude information on joint

absences or whether they are influenced by differences in

the scale of variables (Legendre & Legendre 1998).

Most of the measures considered suitable for ecological

species abundance data (e.g. Bray–Curtis, Canberra, chi-

squared, CY dissimilarity, Hellinger, Orlóci’s chord,

Kulczynski, etc.) have intrinsic non-affine transformations.

They relativise absolute differences in abundance to capture

specific notions of �community structure� (e.g. if two

communities have the same proportions of individuals in

different species, then they may be considered similar).

However, differences in absolute abundances can also be

important ecologically, as they may correspond to differ-

ences in an ecosystem’s productivity (e.g. Roughgarden et al.

1991; Menge et al. 1997) or responses to a pollutant or other

impact. The intrinsic non-affine transformations inherent in

these measures can make relative multivariate dispersions

based on them difficult to interpret by reference to the

original species variables.

It is clear that much thought is needed concerning the

choice of transformation and dissimilarity measure for the

analysis of multivariate dispersions. Interpretations of

results are generally clearer for those measures where any

transformations used are explicit. We have provided here an

abundance-based dissimilarity measure that is directly

interpretable by reference to original species abundances

on a log scale. The measure is flexible as the relative value of

the change from absence to presence can be specified. It

reduces to the Jaccard measure for presence/absence data

and can be partitioned directly according to the contribution

of species composition vs. relative abundance information.

Comparisons of dispersions among groups can reveal

dramatically different stories, depending on which aspect of

assemblage structure is emphasized. Given the difficulties

already encountered in obtaining a consensus concerning

appropriate measures of variability for a single population

(e.g. Williamson 1984; McArdle & Gaston 1992; Leps 1993;

Gaston & McArdle 1994; McArdle & Gaston 1995), it is

going to be even more difficult to obtain a consensus

concerning how to measure variability in whole assemblages

(Underwood 1986). Therefore, we recommend using a range

of dissimilarity measures which cover the spectrum from

emphasizing compositional change to changes in abun-

dances. Armed with this information, the nature of

heterogeneity in species composition (beta diversity) or in

dispersions based on other measures of assemblage struc-

ture can be articulated with greater specificity and confid-

ence.

ACKNOWLEDGEMENTS

OLF (the Norwegian Oil Industry Association) permitted us

to use the macrobenthic data, and Det Norske Veritas and

Akvaplan-niva prepared them. KEE acknowledges the

support of the Research Council of Norway. Kelp holdfast

data were obtained by MJA, in collaboration with C. Diebel

andW. Blom at theAucklandWarMemorialMuseum, funded

by the Royal Society of New Zealand’s Marsden fund. The

manuscript was improved by comments provided by E.B.

Davis, T.D. Olszewski, P. Legendre and one anonymous

referee. A computer program for calculating measures of

dispersion and for performing tests is freely available from

http://www.stat.auckland.ac.nz/�mja/Programs.htm.

RE F ERENCES

Anderson, M.J. (2001). A new method for non-parametric multi-

variate analysis of variance. Aust. Ecol., 26, 32–46.

Anderson, M.J. (2006). Distance-based tests for homogeneity of

multivariate dispersions. Biometrics, 62, 245–253.

Anderson, M.J., Diebel, C.E., Blom, W.M. & Landers, T.J. (2005a).

Consistency and variation in kelp holdfast assemblages: spatial

patterns of biodiversity for the major phyla at different taxo-

nomic resolutions. J. Exp. Mar. Biol. Ecol., 320, 35–56.

Anderson, M.J., Millar, R.B., Blom, W.M. & Diebel, C.E. (2005b).

Nonlinear multivariate models of successional change in com-

munity structure using the von Bertalanffy curve. Oecologia, 146,

279–286.

Bray, J.R. & Curtis, J.T. (1957). An ordination of the upland forest

communities of southern Wisconsin. Ecol. Monogr., 27, 325–349.

Cao, Y., Williams, W.P. & Bark, A.W. (1997). Similarity measure

bias in river benthic Aufwuchs community analysis.. Water Env.

Res., 69, 95–106.

Cao, Y., Larsen, D.P., Hughes, R.M., Angermeier, P.L. & Patton,

T.M. (2002). Sampling effort affects multivariate comparisons of

stream assemblages. J. Nth. Amer. Benth. Soc., 21, 701–714.

Chao, A., Chazdon, R.L., Colwell, R.K. & Shen, T.-J. (2005). A new

statistical approach for assessing similarity of species composi-

tion with incidence and abundance data. Ecol. Lett., 8, 148–159.

Clarke, K.R. (1993). Non-parametric multivariate analyses of

changes in community structure. Aust. J. Ecol., 18, 117–143.

Clarke, K.R. & Green, R.H. (1988). Statistical design and analysis

for a biological effects study. Mar. Ecol. Prog. Ser., 46, 213–226.

Clarke, K.R. & Warwick, R.M. (2001). Change in Marine Communities:

An Approach to Statistical Analysis and Interpretation, 2nd edn. Pri-

mer-e Ltd, Plymouth Marine Laboratory, Plymouth, UK.

Clarke, K.R., Somerfield, P.J. & Chapman, M.G. (2006). On

resemblance measures for ecological studies, including taxo-

nomic dissimilarities and a zero-adjusted Bray–Curtis coefficient

for denuded assemblages. J. Exp. Mar. Biol. Ecol., 330, 55–80.

Czekanowski, J. (1909). Zur Differentialdiagnose der Neander-

talgruppe. Korrespondenz-Blatt deutsch. Ges. Anthropol. Ethnol.

Urgesch., 40, 44–47.

Davis, E.B. (2005). Mammalian beta diversity in the Great Basin,

western USA: palaeontological data suggest deep origin of

modern macroecological structure. Global Ecol. Biogeogr., 14, 479–

490.

692 M. J. Anderson, K. E. Ellingsen and B. H. McArdle

� 2006 Blackwell Publishing Ltd/CNRS



Dice, L.R. (1945). Measures of the amount of ecologic association

between species. Ecology, 26, 297–302.

Ellingsen, K.E. & Gray, J.S. (2002). Spatial patterns of benthic

diversity: is there a latitudinal gradient along the Norwegian

continental shelf? J. Anim. Ecol., 71, 373–389.

Faith, D.P., Minchin, P.R. & Belbin, L. (1987). Compositional

dissimilarity as a robust measure of ecological distance. Vegetatio,

69, 57–68.

Gaston, K.J. & McArdle, B.H. (1994). The temporal variability of

animal abundances: measures, methods and patterns. Phil. Trans.

R. Soc. Lond. B, 345, 335–358.

Gower, J.C. (1966). Some distance properties of latent root and

vector methods used in multivariate analysis. Biometrika, 53, 325–

338.

Gower, J.C. (1971). A general coefficient of similarity and some of

its properties. Biometrics, 27, 857–871.

Gower, J.C. (1987). Introduction to ordination techniques. In:

Developments in Numerical Ecology (eds Legendre, P. & Legendre,

L.). Springer-Verlag, Berlin, pp. 3–64.

Gower, J.C. & Legendre, P. (1986). Metric and Euclidean prop-

erties of dissimilarity coefficients. J. Classif., 3, 5–48.

Hajdu, L.J. (1981). Graphical comparison of resemblance measures

in phytosociology. Vegetatio, 48, 47–59.

Jaccard, P. (1900). Contribution au problème de l’immigration

post-glaciare de la flore alpine. Bull. Soc. Vaudoise Sci. Nat., 36,

87–130.

Kiflawi, M. & Spencer, M. (2004). Confidence intervals and hy-

pothesis testing for beta diversity. Ecology, 85, 2895–2900.

Koleff, P., Gaston, K.J. & Lennon, J.J. (2003). Measuring beta

diversity for presence–absence data. J. Anim. Ecol., 72, 367–382.

Legendre, P. & Gallagher, E.D. (2001). Ecologically meaningful

transformations for ordination of species data. Oecologia, 129,

271–280.

Legendre, P. & Legendre, L. (1998). Numerical Ecology, 2nd English

edition. Elsevier Science BV, Amsterdam, The Netherlands.

Legendre, P., Borcard, D. and Peres-Neto, P.R. (2005). Analyzing

beta diversity: partitioning the spatial variation of community

composition data. Ecol. Monogr., 75, 435–450.

Leps, J. (1993). Taylor’s power law and the measurement of vari-

ation in the size of populations in space and time. Oikos, 68,

349–356.

Levene, H. (1960). Robust tests for equality of variances. In:

Contributions to Probability and Statistics (eds Olkin, I., Ghurye, S.G.,

Hoeffding, W., Madow, W.G. & Mann, H.B.). Stanford Uni-

versity Press, Stanford, CA, pp. 278–292.

Mac Nally, R., Fleishman, E., Bulluck, L.P. & Betrus, C.J. (2004).

Coparative influence of spatial scale on beta diversity within

regional assemblages of birds and butterflies. J. Biogeogr., 31, 917–

929.

Magurran, A.E. (2004). Measuring Biological Diversity. Blackwells,

Oxford, UK.

McArdle, B.H. & Anderson, M.J. (2001). Fitting multivariate

models to community data: a comment on distance-based

redundancy analysis. Ecology, 82, 290–297.

McArdle, B.H. & Anderson, M.J. (2004). Variance heterogeneity,

transformations and models of species abundance: a cautionary

tale. Can. J. Fish. Aquat. Sci., 61, 1294–1302.

McArdle, B.H. & Gaston, K.J. (1992). Comparing population

variabilities. Oikos, 64, 610–612.

McArdle, B.H. & Gaston, K.J. (1995). The temporal variability of

densities: back to basics. Oikos, 74, 165–171.

McArdle, B.H., Gaston, K.J. & Lawton, J.H. (1990). Variation in

the size of animal populations: patterns, problems and artifacts.

J. Anim. Ecol., 59, 439–454.

Menge, B.A., Daley, B., Wheeler, P.A. & Strub, P.T. (1997). Rocky

intertidal oceanography: an association between community

structure and nearshore phytoplankton concentration. Limnol.

Oceanogr., 42, 57–66.

Motyka, J. (1947). O zadaniach I metodach badan geobotanicznych. Sur les
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