
INTRODUCTION

The analysis of multivariate data in ecology is becom-
ing increasingly important. Ecologists often need to test
hypotheses concerning the effects of experimental
factors on whole assemblages of species at once. This
is important for core ecological research and in studies
of biodiversity or environmental impacts in many
habitats, including marine subtidal environments
(Warwick et al. 1988; Gray et al. 1990; Chapman et al.
1995; Glasby 1997), mangroves (Skilleter 1996;
Kelaher et al. 1998), freshwater systems (Faith et al.
1995; Quinn et al. 1996) and terrestrial systems (Oliver
& Beattie 1996; Anderson & Clements, in press).

Univariate analysis of variance (ANOVA) provides an
extremely powerful and useful tool for statistical tests
of factors and their interactions in experiments
(Underwood 1981, 1997). Partitioning variation, as in
multifactorial ANOVA, is particularly important for test-
ing hypotheses in complex ecological systems with nat-
ural temporal and spatial variability. This partitioning
is also needed to test multivariate hypotheses in ecol-
ogy for experimental designs involving several factors.

This paper describes a new non-parametric test of
the general multivariate hypothesis of differences in the
composition and/or relative abundances of organisms
of different species (variables) in samples from differ-
ent groups or treatments. This test is a significant
advance on previous methods because it can be based
on any measure of dissimilarity and can partition
variation directly among individual terms in a multi-
factorial ANOVA model. The test is applicable to any
situation where the simultaneous responses of many
potentially non-independent variables (usually abun-
dances of species in an assemblage) have been meas-
ured in samples from a one-factor or multifactorial
ANOVA design.

Powerful multivariate statistical methods, such as the
traditional multivariate analysis of variance (MANOVA),
have existed for decades (Hotelling 1931; Wilks 1932;
Fisher 1936; Bartlett 1939; Lawley 1939; Pillai 1955),
but tests using these statistics rely on assumptions that
are not generally met by ecological data. The assump-
tion that the data conform to a multivariate normal dis-
tribution is particularly unrealistic for most ecological
data sets. This is because the distributions of abun-
dances of individual species are usually highly aggre-
gated or skewed (e.g. Gaston & McArdle 1994). Also,
abundances take discrete values rather than being
continuous, species with small means often have
asymmetric distributions because they are necessarily
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truncated at zero, and rare species contribute lots of
zeros to the data set. MANOVA test statistics are not
particularly robust to departures from multivariate nor-
mality (Mardia 1971; Olson 1974; Johnson & Field
1993). Finally, many of these test statistics are simply
impossible to calculate when there are more variables
than sampling units, which often occurs in ecological
applications.

Many non-parametric methods for tests of differ-
ences among a priori groups of observations (as in
MANOVA) have been developed (Mantel 1967; Mantel
& Valand 1970; Hubert & Schultz 1976; Mielke et al.
1976; Clarke 1988, 1993; Smith et al. 1990; Excoffier
et al. 1992; Edgington 1995; Pillar & Orlóci 1996;
Legendre & Anderson 1999). These methods gener-
ally have two things in common. First, they are based
on measures of distance or dissimilarity between pairs
of individual multivariate observations (which I will
refer to generally as distances) or their ranks. A statis-
tic is constructed to compare these distances among
observations in the same group versus those in differ-
ent groups, following the conceptual framework of
ANOVA. Second, they use permutations of the obser-
vations to obtain a probability associated with the null
hypothesis of no differences among groups.

These non-parametric methods generally fall into
two categories. First, there are those that can be based
on any chosen distance measure. There are many such
measures and these have different properties, which
make them appropriate for different kinds of data
(Legendre & Legendre 1998). For example, to express
differences in community structure, the semimetric
Bray–Curtis measure of ecological distance (Bray &
Curtis 1957) or Kulczynski’s (1928) semimetric meas-
ure are generally preferred over metric measures, like
Euclidean distance (Odum 1950; Hajdu 1981; Faith
et al. 1987; Clarke 1993). The methods that are flexi-
ble enough to be used with any such distance measure
(e.g. Mantel 1967; Hubert & Schultz 1976; Smith 
et al. 1990; Clarke 1993) have much to recommend
them for this reason.

The drawback to using these methods is that they are
not able to cope with multifactorial ANOVA. That is, they
are not able to partition variation across the many
factors that form part of the experimental design.
Consequently, for most complex designs, one must
analyse data as one-way analyses in multiple subsets
within particular levels of factors. These multiple one-
way analyses and qualitative interpretations of ordin-
ation plots are then used to infer something about
interactions or variability at different spatial scales (e.g.
Anderson & Underwood 1994; Kelaher et al. 1998).

Some of the proposed non-parametric methods do
allow partitioning for a complex design (e.g. Excoffier
et al. 1992; Edgington 1995; Pillar & Orlóci 1996), but
these are restricted for use with metric distance meas-
ures, which are not ideal for ecological applications.

Furthermore, even if these statistics were to be used,
there has been disagreement concerning appropriate
permutational strategies for complex ANOVA, particu-
larly for tests of interactions (e.g. Edgington 1995;
Manly 1997). There have been some recent examples
of direct statistical analyses of Bray–Curtis distances
(Faith et al. 1995; Underwood & Chapman 1998).
These are restricted, however, to very specific experi-
mental designs or hypotheses and cannot be used for
any multifactorial ANOVA design.

Ecologists need a non-parametric multivariate
method that can partition variation based on any dis-
tance measure in any ANOVA design. The method needs
to be robust, interpretable by reference to the experi-
mental design, and should lack formal assumptions
concerning distributions of variables. The purpose of
this paper is to outline just such a method and to give
some ecological examples of its use. The more general
mathematical theory underlying this method, along
with simulations and a comparison with the related
approach of Legendre and Anderson (1999), is
described elsewhere (McArdle & Anderson, in press).

STRATEGY FOR NON-PARAMETRIC
MULTIVARIATE ANALYSIS

An outline for a general approach to the analysis of
multivariate data in ecology was given by Clarke and
Green (1988) and Clarke (1993). For experimental
designs used to test hypotheses defined a priori, there
are essentially four steps: (i) a choice is made con-
cerning an appropriate transformation and/or standard-
ization (if any) to apply to the data, given the hypothesis
and the scales and nature of the species variables; (ii)
a choice is made concerning the distance measure to
be used as the basis of the analysis (e.g. Bray–Curtis,
Euclidean, x2 or other measure); (iii) ordination
(and/or clustering) is performed in order to visualize
patterns of resemblance among the observations based
on their community composition; and (iv) a non-
parametric multivariate test for differences among
groups is done to obtain a rigorous probabilistic 
statement concerning multivariate effects of a priori
groups. Note that (iii) is not essential in terms of 
the statistical test; ordination simply gives a visual 
representation by reducing the dimensionality of the
data. In this paper, I focus on step (iv) of this pro-
cedure, which currently poses a problem for multi-
factorial designs.

DESCRIPTION OF THE TEST: ONE-WAY
DESIGN

The two essential considerations for the test are: (i) the
construction of the test-statistic, and (ii) the calculation
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of a P-value using some method of permutation. I will
describe the method, which I shall simply call non-
parametric MANOVA, first for the one-way design and
then for more complex designs, followed by some eco-
logical examples. I deal here only with the case of
balanced ANOVA designs, but analogous statistics for any
linear model, including multiple regression and/or
unbalanced data, can be constructed, as described by
McArdle and Anderson (in press).

The test statistic: an F-ratio

The essence of analysis of variance is to compare vari-
ability within groups versus variability among different
groups, using the ratio of the F-statistic. The larger the
value of F, the more likely it is that the null hypothesis
(H0) of no differences among the group means (i.e.
locations) is false. For univariate ANOVA, partitioning
of the total sum of squares, SST, is achieved by calcu-
lating sums of squared differences (i) between indiv-
idual replicates and their group mean (SSW, the
within-group sum of squares; Table 1a), and (ii)
between group means and the overall sample mean
(SSA, the among-group sum of squares). Next, consider
the multivariate case where p variables are measured
simultaneously for each of n replicates in each of a
groups, yielding a matrix of data where rows are obser-
vations and columns are variables. A natural multi-
variate analogue may be obtained by simply adding up
the sums of squares across all variables (Table 1b). An
F-ratio can then be constructed, as in the univariate
case.

This multivariate analogue can also be thought of
geometrically (e.g. Caliński & Harabasz 1974; Mielke
et al. 1976; Edgington 1995; Pillar & Orlóci 1996), as
shown in Fig. 1 for the case of two groups and two vari-
ables (dimensions). Here, SSW is the sum of the
squared Euclidean distances between each individual
replicate and its group centroid (the point corres-
ponding to the averages for each variable, Fig. 1 and
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Table 1. Calculations of within-group sums of squares for partitioning in (a) univariate ANOVA, (b) a multivariate analogue
obtained by summing across variables, (c) a multivariate analogue equivalent to (b) obtained using sums of squared Euclidean
distances, (d) the traditional MANOVA approach, which yields an entire matrix (W) of within-group sums of squares and cross
products, and (e) the partitioning using inter-point distances advocated here, equivalent to (b) and (c) if Euclidean distances
are used

Univariate
(a) One variable SSW 5 S

a
i 5 1 S

n
j 5 1 ( yij – y–i.)2

Multivariate
(b) Summed across variables SSW 5 S

a
i 5 1 S

n
j 5 1 S

p
k 5 1 ( yijk – y–i.k)2

(c) Geometric approach SSW 5 S
a
i 5 1 S

n
j 5 1 ( yij – y–i.)T( yij – y–i.)

(inner product, a scalar, based on Euclidean distances, correlations between 
variables ignored)

(d) Traditional MANOVA W 5 S
a
i 5 1 S

n
j 5 1 ( yij – yy–i.)( yij – yy–i.)T

(outer product, a matrix, based on Euclidean distances, correlations between 
variables matter)

(e) Inter-point geometric approach
(a scalar, based on any distance measure, correlations between variables ignored) SS1 5

1
S

N – 1
i 5 1 S

N
j 5 i 1 1 d2

ij eijn

yij, univariate observation of the jth replicate (j 5 1,…, n) in the ith group (i 5 1,…, a); yijk, observation of yij for the kth
variable (k 5 1,…, p); yij, vector of length p, indicating a point in multivariate space according to p variables (dimensions) for
observation j in group i. A superscript )T9 indicates the transpose of the vector, bars over letters indicate averages and a dot
subscript indicates averaging was done over that subscripted variable.

Fig. 1. A geometric representation of MANOVA for two
groups in two dimensions where the groups differ in location.
The within-group sum of squares is the sum of squared dis-
tances from individual replicates to their group centroid. The
among-group sum of squares is the sum of squared distances
from group centroids to the overall centroid. (——) Distances
from points to group centroids; (•••••••) distances from group
centroids to overall centroid; (q), overall centroid; (h), group
centroid; (d), individual observation.



Table 1c). Note that this additive partitioning using a
geometric approach yields one value for each of SSW,
SSA and SST as sums of squared Euclidean distances.
This geometric approach gives sums of squares equiv-
alent to the sum of the univariate sums of squares
(added across all variables) described in the previous
paragraph. This differs from the traditional MANOVA

approach, where partitioning is done for an entire
matrix of sums of squares and cross-products (e.g.
Mardia et al. 1979; Table 1d).

The key to the non-parametric method described
here is that the sum of squared distances between points
and their centroid is equal to (and can be calculated
directly from) the sum of squared interpoint distances
divided by the number of points. This important
relationship is illustrated in Fig. 2 for points in two
dimensions. The relationship between distances to
centroids and interpoint distances for the Euclidean
measure has been known for a long time (e.g. 
Kendall & Stuart 1963; Gower 1966; Caliński &
Harabasz 1974; Seber 1984; Pillar & Orlóci 1996;
Legendre & Legendre 1998; see also equation B.1 in
Appendix B of Legendre & Anderson 1999). What is
important is the implication this has for analyses 
based on non-Euclidean distances. Namely, an 
additive partitioning of sums of squares can be obtained
for any distance measure directly from the distance
matrix, without calculating the central locations of
groups.

Why is this important? In the case of an analysis
based on Euclidean distances, the average for each vari-
able across the observations within a group constitutes
the measure of central location for the group in
Euclidean space, called a centroid. For many distance
measures, however, the calculation of a central location
may be problematic. For example, in the case of the
semimetric Bray–Curtis measure, a simple average
across replicates does not correspond to the ‘central
location’ in multivariate Bray–Curtis space. An
appropriate measure of central location on the basis 
of Bray–Curtis distances cannot be calculated 
easily directly from the data. This is why additive
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Fig. 2. The sum of squared distances from individual
points to their centroid is equal to the sum of squared inter-
point distances divided by the number of points.

Fig. 3. Schematic diagram
for the calculation of (a) a dis-
tance matrix from a raw data
matrix and (b) a non-para-
metric MANOVA statistic for a
one-way design (two groups)
directly from the distance
matrix. SST, sum of squared
distances in the half matrix
(j) divided by N (total 
number of observations); SSW,
sum of squared distances
within groups ( ) divided by
n (number of observations 
per group). SSA 5 SST – SSW

and F = [SSA/(a – 1)]/[SSW/
(N – a)], where a 5 the num-
ber of groups.



partitioning (in terms of ‘average’ differences among
groups) has not been previously achieved using
Bray–Curtis (or other semimetric) distances. However,
the relationship shown in Fig. 2 can be applied to
achieve the partitioning directly from interpoint
distances.

Thus, consider a matrix of distances between every
pair of observations (Fig. 3a). If we let N 5 an, the total
number of observations (points), and let dij be the dis-
tance between observation i 5 1,…, N and observation
j 5 1,…, N, the total sum of squares is

1
SST 5 S

N–1

i 5 l
S
N

j 5 i 11
d2

ij (1)
N

That is, add up the squares of all of the distances in
the subdiagonal (or upper-diagonal) half of the distance
matrix (not including the diagonal) and divide by N
(Fig. 3b). In a similar fashion, the within-group or
residual sum of squares is

1
SSW 5 S

N–1

i 5 l
S
N

j 5 i 11
d2

ij eij (2)
n

where eij takes the value 1 if observation i and obser-
vation j are in the same group, otherwise it takes the
value of zero. That is, add up the squares of all of the
distances between observations that occur in the same
group and divide by n, the number of observations per
group (Fig. 3b). Then SSA 5 SST – SSW and a pseudo
F-ratio to test the multivariate hypothesis is

SSA /(a – 1)
F 5 (3)

SSW /(N – a)

If the points from different groups have different cen-
tral locations (centroids in the case of Euclidean dis-
tances) in multivariate space, then the among-group
distances will be relatively large compared to the within-
group distances, and the resulting pseudo F-ratio will
be relatively large.

One can calculate the sums of squares in equations
(1) and (2) and the statistic in equation (3) from a 
distance matrix obtained using any distance measure.
The statistic in equation (3) corresponds exactly to 
the statistic in equation (4) of McArdle and Anderson
(in press), who have shown more generally how 
partitioning for any linear model can be done directly
from the distance matrix, regardless of the distance
measure used. Another important aspect of the stat-
istic described above is that, in the case of a Euclidean
distance matrix calculated from only one variable,
equation (3) gives the same value as the traditional
parametric univariate F-statistic.

This is proposed as a new non-parametric MANOVA

statistic that is intuitively appealing, due to its analogy
with univariate ANOVA, and that is extremely relevant
for ecological applications. The results (in terms of
sums of squares, mean squares and pseudo F-ratios)
obtained for individual terms in a multivariate analysis

can be interpreted in the same way as they usually are
for univariate ANOVA. The difference is that the hypoth-
esis being tested for any particular term is a multivariate
hypothesis.

OBTAINING A P-VALUE USING
PERMUTATIONS

The multivariate version of the F-statistic described
here is not distributed like Fisher’s F-ratio under the
null hypothesis. This is so because (i) we do not expect
the individual variables to be normally distributed, and
(ii) we do not expect that the Euclidean distance will
necessarily be used for the analysis. Even if each of the
variables were normally distributed and the Euclidean
distance used, the mean squares calculated for the mul-
tivariate data would not each consist of sums of inde-
pendent x2 variables, because, although individual
observations are expected to be independent, individ-
ual species variables are not independent of one
another. Thus, traditional tabled P-values cannot be
used. A distribution of the statistic under the null
hypothesis can be created, however, using permutations
of the observations (e.g. Edgington 1995; Manly
1997). The only situation in which one could use the
traditional tabled probabilities would be if one had a
single variable that could reasonably be assumed to be
normally distributed and one used Euclidean distances
for the analysis.

Suppose the null hypothesis is true and the groups
are not really different (in terms of their composition
and/or their relative abundances of species, as measured
by the Bray–Curtis distances). If this were the case,
then the multivariate observations (rows) would be
exchangeable among the different groups. Thus, the
labels on the rows that identify them as belonging to a
particular group could be randomly shuffled (per-
muted) and a new value of F obtained (called, say, Fp).
This random shuffling and re-calculation of Fp is then
repeated for all possible re-orderings of the rows rela-
tive to the labels. This gives the entire distribution of
the pseudo F-statistic under a true null hypothesis for
our particular data. Comparing the value of F obtained
with the original ordering of the rows to the distribution
created for a true null by permuting the labels, a P-value
is calculated as

(No. of F p ≥ F)
P 5 (4)

(Total no. of F p)

Note that we consider the original observed value of F
to be a member of the distribution of Fp under per-
mutation (i.e. it is one of the possible orderings of the
labels on the rows). The usual scientific convention of
an a priori significance level of a 5 0.05 is generally
used for interpreting the significance of the result, as
in other statistical tests. It is also possible to view the
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P-value as a measure of confidence concerning the null
hypothesis (Fisher 1955; Freedman & Lane 1983).

With a groups and n replicates per group, the num-
ber of distinct possible outcomes for the F-statistic in
a one-way test is (an)!/(a!(n!)a) (Clarke 1993). As it is
usually not practical to calculate all possible permuta-
tions, because of the time involved, P can be calculated
using a large random subset of all possible permutations
(Hope 1968). However, the precision of the P-value will
increase with increasing numbers of permutations.
Generally, at least 1000 permutations should be done
for tests with an a-level of 0.05 and at least 5000 per-
mutations should be done for tests with an a-level of
0.01 (Manly 1997).

ASSUMPTIONS

The only assumption of the test is that the observations
(rows of the original data matrix) are exchangeable
under a true null hypothesis. To assume exchangeability
under the null hypothesis is generally to assume that
the observations are independent and that they have
similar distributions (e.g. Boik 1987; Hayes 1996). By
‘similar distributions’, I mean similar multivariate dis-
persions of points, not that the points are necessarily
multivariate normal. The test described here is a test
for differences in location (means or centroids) among
groups of multivariate observations based on the
chosen distance measure. Like its univariate counter-
part, which is sensitive to heterogeneity of variances,
this test and its predecessors that use permutations, like
ANOSIM (Clarke 1993), will also be sensitive to differ-
ences in the dispersions of points, even if the locations
do not differ.

The sensitivity of ANOSIM to differences in dispersion
has been suggested as an advantage by Clarke (1993).
This is because it was introduced in the context of
detecting environmental impacts, for which detection
of differences of any kind between control and impacted
locations is very important for environmental reasons.
Here, I simply suggest that caution be exercised in
interpreting the results of tests of significance.
Determining if significant differences among groups
may be due to differences in dispersion versus differ-
ences in location (or some combination of the two) is
an important statistical and ecological issue. The use
of permutation tests to obtain P-values does not avoid
this issue.

A useful comparative index of multivariate dispersion
has been given by Warwick and Clarke (1993). Also, a
separate permutation test for significant differences in
multivariate dispersions (after removing effects of dif-
ferences in location), as an accompaniment to the non-
parametric MANOVA approach given here, will be
described elsewhere (Anderson, Dutilleul, Lapointe &
Legendre, unpubl. data).

DISTINCTION FROM TRADITIONAL TEST
STATISTICS

Although the statistic described here is sensitive to dif-
ferences in the relative dispersion of points among
groups, it takes no account of the correlations among
variables. In traditional MANOVA, the test-statistics (such
as Wilks’ Lambda) use information contained in the
between-group and/or within-group sample variance–
covariance matrices (e.g. Table 1d, see Olson 1974;
Johnson & Field 1993). The traditional MANOVA tests
assume not only that the variance for each variable
remains constant across different groups (i.e. the
points in different groups have similar scatter), they also
assume that the relationships among the variables (their
covariances or correlations) do not differ across groups.

These differences in the sensitivities of different
multivariate test statistics are shown diagrammatically
in Fig. 4 for two variables (two dimensions). Figure 4(a)
shows two groups that differ in their correlation struc-
ture, but not in their variances or location. Figure 4(b)
shows two groups that differ only in their dispersions,
but not in their correlation or location. Although all
MANOVA statistics are designed to test for differences in
location, the traditional statistics will also be sensitive
to differences in correlations (Fig. 4a) as well as dif-
ferences in dispersion (Fig. 4b). The method of non-
parametric MANOVA described here will only be sensitive
to differences in dispersion (Fig. 4b). The correlations
among variables play no role in the analysis. If differ-
ences in the relationships amongst variables form a
hypothesis of interest, then some other non-parametric
techniques may be relevant (e.g. Biondini et al. 1991;
Krzanowski 1993).

ONE-WAY EXAMPLE: EFFECTS OF
GRAZERS

Consider the following example, taken from an eco-
logical study by Anderson and Underwood (1997). The
study was designed to test the hypothesis that grazing
by gastropods affects intertidal estuarine assemblages.
The experiment was done at an intertidal oyster farm
from January to July 1994 in Quibray Bay, south of
Sydney, New South Wales, Australia. Experimental
surfaces (10 cm 3 10 cm) were enclosed in cages to
exclude gastropod grazers, while other surfaces were
left open to grazing. A third treatment consisted of
caged areas where natural densities of grazers were
included. This was a control for the effect of the cage
itself on assemblages. There were n 5 20 surfaces in
each of the three treatments. The numbers of indi-
viduals of each of 21 taxa (invertebrates and algae) 
colonizing each surface were recorded.

The rationale for increasing the severity of the trans-
formation to increase the relative contribution of rare

NON-PARAMETRIC MANOVA FOR ECOLOGY 37



versus abundant species in the analysis, given by Clarke
and Green (1988), is followed here. Note that the trans-
formation is not done in an effort to make data con-
form to any assumptions of the analysis. In this
example, the data contained some species that occurred
on a very large relative scale of abundance (e.g.
Spirorbid worms occurred in the thousands), so the
data were transformed by taking double-square roots
before the analysis. To visualize the multivariate 
patterns among observations, non-metric multi-
dimensional scaling (MDS) was performed on the
Bray–Curtis distances (Kruskal & Wish 1978), using
the PRIMER computer program. Non-parametric
MANOVA was then done on Bray–Curtis distances, as
described in the previous section, using the computer
program NPMANOVA, written by the author in FORTRAN.

The number of possible permutations for the one-
way test in the case of the grazing experiment is
9.6 3 1025. A random subset of 4999 permutations was
used (Fig. 5). In this case, the null hypothesis of no
differences among groups was rejected, as the observed
value was much larger than any of the values obtained
under permutation (Fig. 5, Table 2).

A POSTERIORI TESTS

As in univariate ANOVA where there is a significant result
in a comparison of 3 or more treatments, we may wish
to ask for the multivariate case: wherein does the sig-
nificant difference lie? This can be done by using the
same test, given above for the one-way comparison of
groups, but where individual pair-wise comparisons
between particular groups are done. To continue with
the logic of the analogous univariate situation, we 
can use a t-statistic (which is simply the square root of
the value of the F-statistic described above) for these
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Fig. 4. Two variables in each of two groups of observations
where (a) the groups differ in correlation between variables,
but not in location or dispersion and (b) the groups differ 
in dispersion, but not in location or correlation between
variables.

Fig. 5. Distribution of the non-parametric MANOVA

F-statistic for 4999 permutations of the data on assemblages
in different grazing treatments. The real value of F for these
data is very extreme by reference to this distribution
(F 5 36.62): thus there are strong differences among the
assemblages in different grazing treatments.

Table 2. Non-parametric MANOVA on Bray–Curtis dis-
tances for assemblages of organisms colonizing intertidal sur-
faces in estuaries in three grazing treatments (grazers
excluded, grazers inside cages, and surfaces open to grazers)

Source d.f. SS MS F P

Grazers 2 18 657.65 9328.83 36.61 0.0002
Residual 57 14 520.89 254.75
Total 59 33 178.54

Comparison* t P

Open versus caged 8.071 0.0002
Open versus cage control 3.268 0.0002
Caged versus cage control 6.110 0.0002

*Pair-wise a posteriori tests among grazing treatments.



pairwise comparisons. These have the same inter-
pretation as univariate t-tests, but they test the general
multivariate hypothesis of no difference between the
groups on the basis of the Bray–Curtis (or other
chosen) distances. This is Student’s univariate 
t-statistic if Euclidean distances are chosen for the
analysis of only one variable. P-values for each test are
obtained using separate sets of permutations that are
only done across the pair of groups being compared.
In this example, a random subset of 4999 permutations
was used (out of a possible 6.8 3 109) for each pair-
wise comparison.

For the analysis of the experimental removal of graz-
ers, there was a significant difference among all pairs
of treatments: assemblages colonizing surfaces in cages
differed from those in the open or in cage controls
(t 5 8.07, P 5 0.0002 and t 5 6.11, P 5 0.0002, respec-
tively). Grazers had a significant effect on the assem-
blages, which is consistent with the pattern of
separation of points corresponding to different treat-
ments in the non-metric MDS plot (Fig. 6). The fact
that assemblages on open surfaces also differed signifi-
cantly from those in cage controls (t 5 3.27,
P 5 0.0002) suggested that there was some additional
artifact due to the presence of a cage in the experiment.

An important point here is that the a posteriori com-
parisons just described did not make any correction for
experiment-wise error rate (Day & Quinn 1989).
Similarly, the multivariate pair-wise tests available in
the computer program NPMANOVA are not corrected for
experiment-wise error rate. This means that with an a
priori significance level of a 5 0.05, one should expect
to obtain a significant result in one out of every 20 

independent tests by chance alone. Nevertheless, the
P-value obtained under permutation for any individual
pair-wise test is exact. Many of the methods used for
correcting error rates for multiple comparisons, such
as the Bonferroni method, are very conservative but
may be applied.

MORE COMPLEX DESIGNS

For more complex designs, we can start by consider-
ing the situation with two factors in a factorial (or
orthogonal) design. The principles used to partition the
variation directly from the distance matrix and to obtain
the statistics and permutation methods for individual
terms in the model can be readily generalized to other
multifactorial cases. The logic applied to multifactorial
ANOVA of univariate data (e.g. see Underwood 1981,
1997) also applies to the analysis of multivariate data
using this non-parametric procedure. For example,
tests of main effects should be examined after tests for
interactions.

Calculating the statistic

Let A designate factor 1 with a levels (treatments or
groups) and B designate factor 2 with b levels, with n
replicates in each of the ab combinations of the two fac-
tors. The total number of observations is N 5 abn. The
total sum of squares in the analysis is calculated as for
the one-way case according to equation (1). To partition
the variation, the within-group sum of squares for factor
A, ignoring any influence of B, is calculated as

1
SSW(A) 5 S

N–1

i 5 1
S
N

j 5 i 11
d2

ij eij
(A) (5)

bn

where eij
(A) takes the value 1 if observation i and obser-

vation j are in the same group of factor A, otherwise it
takes the value of zero. Similarly, the within-group sum
of squares for factor B, ignoring any influence of A, is

1
SSW(B) 5 S

N–1

i 5 l
S
N

j 5 i 11
d2

ij eij
(B) (6)

an

Then, the corresponding sums of squares for each of
the main effects in the analysis are SSA 5 SST – SSW(A)

and SSB 5 SST – SSW(B).
The residual sum of squares is calculated by con-

sidering the interpoint distances within each of the ab
combinations of factor A and B, thus:

1
SSR 5 S

N–1

i 5 l
S
N

j 5 i 11
d2

ij eij
(AB) (7)

n

where eij
(AB) takes the value 1 if observation i and obser-

vation j are in the same combination of factors A and
B, otherwise it takes the value of zero. We then can 
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Fig. 6. Non-metric MDS plot of assemblages colonizing
intertidal surfaces in Quibray Bay in each of three different
grazing treatments: (m), cage control; (s), open; ( ) caged.



easily obtain the sum of squares corresponding to the
interaction term: SSAB 5 SST – SSA – SSB – SSR. It may
be easier to consider the squared distances being
summed in equations (5) through (7) by reference to
their physical location in the distance matrix itself, as
illustrated in Fig. 7.

In the case of a two-factor design where one factor
is nested in the other, the same general approach is
used. In this case, however, there is no interaction term
in the analysis and we have instead SSB(A) 5 SST – SSA

– SSR, where B(A) denotes that factor B is nested in
factor A.

Having obtained appropriate sums of squares, the
construction of the pseudo F-statistic for each term in
the analysis for non-parametric MANOVA then follows
the same rules and formulae as it would for the usual
univariate ANOVA. The construction of the F-ratio
depends on the experimental design, that is, whether
factors are nested or factorial and whether they are fixed
or random, exactly as for univariate ANOVA (e.g.
Underwood 1981, 1997; Winer et al. 1991).

Doing the permutations

The method of permutation required to obtain an exact
test is not so simple if there is more than one factor in
the design. The choice of an appropriate permutation
method is not trivial and should be considered care-
fully for each term in the model. Indeed, the lack of
exact tests or knowledge of how the available approxi-
mate permutation tests might behave for complex
models has been a sticking point in the development
of multivariate non-parametric methods (e.g. Crowley
1992; Clarke 1993). To construct exact tests, two
important issues must be considered (Anderson & ter
Braak, unpublished data). First, which units should be
permuted (i.e. what are exchangeable under the null
hypothesis) and second, should any restrictions be
imposed on the permutations to account for other
factors in the design?

In many important situations, such as tests of inter-
actions, no exact permutation test can be done. Also,
there are times when the exact test imposes so many
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Fig. 7. Schematic diagram of the interpoint distances used
to partition the variability in the multivariate data set and to
calculate the sum of squares for each term in a two-factor
orthogonal design (each factor has two groups or levels). (a)
SSW(A) 5 sum of squared distances within groups of A (j),
divided by (bn). (b) SSW(B) 5 sum of squared distances 
within groups of B ( ), divided by (an). (c) SSR 5 sum of
squared distances within combinations of AB ( ), divided
by (n) (residual sum of squares). SST 5 sum of squared 
distances in the total half matrix, divided by (abn), 
SSA 5 SST – SSW(A), SSB 5 SST – SSW(B), SSAB 5 SST – SSA –
SSB – SSR.



restrictions as to render the test meaningless, due to
there being too few possible permutations left. In these
cases, approximate permutation tests should be used,
of which there are several alternatives, including
permutation of residuals and permutation of raw data
across all terms in the analysis (e.g. Freedman & Lane
1983; ter Braak 1992; Manly 1997). Some empirical
comparisons of these methods are provided by
Gonzalez and Manly (1998) and Anderson and
Legendre (1999).

ECOLOGICAL EXAMPLES

Two-way factorial design

The first example is from an experiment in Middle
Harbour (part of Sydney Harbour) to test for the effect
of shade and proximity to the seafloor on assemblages
of invertebrates and algae colonizing subtidal hard sur-
faces near marinas (Glasby 1999). The experiment was
a two-way crossed (orthogonal) design with n 5 4 repli-
cate settlement plates (15 cm 3 15 cm sandstone)
either far from or near to the seafloor (the factor of
‘position’; all plates were at a similar depth of approxi-
mately 2 m below low water) and in one of three 
shading treatments: (i) shade (an opaque plexiglass
roof), (ii) a procedural control (a clear plexiglass roof),
and (iii) no shade. Organisms colonizing the plates after
33 weeks were counted and a total of 46 taxa were
included in the analyses. Organisms that occurred 
only once across the entire data set were not included.
Non-parametric MANOVA was done on Bray–Curtis 
distances calculated from double-root transformed data
using the FORTRAN program NPMANOVA. The sample
size was reasonably small for this study (n < 5), so the

test was done using unrestricted permutation of raw
data (e.g. Manly 1997; Gonzalez & Manly 1998) with
4999 random permutations. Similar results were
obtained using permutation of residuals under a
reduced model (not shown).

There was no significant interaction of shade and
position, but both main effects were significant
(Table 3, Fig. 8). It was then of interest to compare the
groups corresponding to different shading treatments
using a posteriori tests (Table 3). It was not necessary
to do this for the effect of position, because this factor
only had two groups. Assemblages of organisms on
settlement plates near the bottom were extremely differ-
ent from those far away from the bottom (Fig. 8). Also,
assemblages on shaded plates were significantly differ-
ent from those on either the procedural control or on
unshaded plates, which themselves did not differ
(Table 3, Fig. 8). This analysis also shows how the effect
of position relative to the bottom was much greater than
the effect of shading on assemblages in this experiment
(compare the values of their mean squares in Table 3).
The non-parametric approach advocated here allows
tests of significance, but it also allows relative sizes of
effects to be compared directly through the partitioning
of the variation and examination of mean squares.

Three-way design, including nesting

The second example comes from an experiment to test
the hypothesis that the size of a patch available for
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Table 3. Non-parametric MANOVA on Bray–Curtis dis-
tances for assemblages of organisms colonizing subtidal sand-
stone settlement panels after 33 weeks in an estuary at
different distances from the seafloor (positions either near or
far) and in three different shading treatments

Source d.f. SS MS F P

Position 1 5595.40 5595.40 13.536 0.0002
Shade 2 3566.44 1783.22 4.314 0.0006
Position 3 2 1238.94 619.47 1.499 0.1394

shade
Residual 18 7440.66 413.37
Total 23 17 841.43

Comparison* t P

Shade versus control 1.783 0.0154
Shade versus no shade 1.987 0.0018
Control versus no shade 0.866 0.5560

*Pair-wise a posteriori tests among shading treatments.

Fig. 8. Two-factor non-metric MDS plot of subtidal 
assemblages colonizing sandstone settlement plates after 
33 weeks in Middle Harbour that were either near to or far
from the seafloor and in one of three shading treatments. (r),
Shaded; ( ), control; (s), no shade; 1, far from the sea floor;
2, close to the sea floor.



colonization would affect the succession of assemblages
in equal areas on those patches (Anderson 1998). This
hypothesis was tested using wooden panels of three 
different sizes (10 cm 3 10 cm, 20 cm 3 20 cm and
40 cm 3 40 cm). Two panels of a given size were
attached to sticks that were then strapped to the 
structure of an intertidal oyster farm in the Port
Stephens estuary in New South Wales, Australia in
January of 1995 (see Anderson 1998 for details). Six
sticks (two for each of the three patch sizes) were then
collected independently after periods of 3, 6, 9, 12 
and 18 months of exposure to colonization. The experi-
mental design thus consisted of three factors: time 
(5 periods of submersion), patch (3 sizes) and sticks
(2 sticks per time 3 patch combination, a random
nested factor), with n 5 2 panels per stick. Organisms
colonizing panels were quantified in a 10 cm 3 10 cm
area from each panel (chosen randomly from the larger-
sized panels). A total of 33 taxa were included in 
multivariate analyses.

The analysis was done using NPMANOVA on Bray–
Curtis distances calculated on double-root trans-
formed data, as for the previous examples. In this case,
however, an exact permutation test for the nested factor
(sticks) was carried out by permuting the observations
randomly across sticks, but only within the 5 3 3 com-
binations of levels of time 3 patch. Then, for the test
of the upper-level terms (the main effects of time, patch
size and their interaction), individual replicates on a
stick were permuted together as a unit (i.e. whole sticks
were permuted). This is done so that the upper-level
effects can be tested against the variability across sticks,
not across individual replicates, as is necessary under
the null hypothesis for a nested hierarchy (e.g. Clarke
1993). For all tests, a subset of 4999 permutations was
used.

The nested factor of sticks was not significant in the
multivariate analysis, but the time 3 patch size inter-
action was significant (Table 4). Individual pair-wise
comparisons of effects of patch size for each time were
nearly identical to the one-way tests given in Anderson
(1998) using analysis of similarities (ANOSIM, Clarke
1993). Assemblages were significantly different on the
smallest patches compared to the other sized patches
after 3, 6, 9 or 12 months. Assemblages on the two
larger sized patches did not differ significantly from one
another except after 12 months. After 18 months,
assemblages were similar on all patch sizes.

Non-metric MDS plots helped to interpret these
results. Two separate ordinations were done on these
data, as the stress value for the non-metric MDS 
plot that included all observations was too high for a
reasonable interpretation. The effect of different patch
sizes appeared to be fairly consistent (in terms of 
its magnitude and direction) after 3, 6 or 9 months
(Fig. 9a). After 12 or 18 months, the observations
become more scattered within and across the groups

and the effects of patch size become less clear (Fig. 9b).
Increased dispersion (variability in assemblages) after
these longer periods of time, compared to earlier
periods, is seen clearly in the two-factor plot of stick
centroids (Fig. 9c, which includes all data). As noted
earlier, the tests are sensitive to such differences in dis-
persion. Overall, although the two factors did interact,
the effect of time (i.e. succession) was relatively more
important in distinguishing assemblages than the size
of the patch (compare their mean squares in Table 4),
and effects of patch size decreased through time for
these assemblages (see Anderson 1998 for further
details).

DISCUSSION

Natural temporal and spatial variability is intrinsic to
ecological systems. Indeed, variability might be con-
sidered the currency of ecological scientific work. It is
for this reason that statistical analysis plays such an
important role in the development of ecology as a
science. In Design of Experiments, R. A. Fisher (1935,
p. 4) wrote:

We may at once admit that any inference from the
particular to the general must be attended with
some degree of uncertainty, but this is not the
same as to admit that such inference cannot be
absolutely rigorous, for the nature and degree of
uncertainty may itself be capable of rigorous
expression.

Quantitative statistical inference is indeed what is
needed for the rigorous interpretation of mensurative
or manipulative ecological experiments. Although our
conclusions may be uncertain, they are still rigorous in
the sense that the degree of uncertainty can be
expressed in terms of mathematical probability. In uni-
variate analysis, W. S. Gosset (‘Student’ 1908) made
this possible for comparisons of two treatments, while
R. A. Fisher made this possible for many treatments
and experimental factors. In a complex and intrinsi-
cally variable world, ANOVA allows us to identify simul-
taneous effects and interactions of more than one
factor, and to identify the uncertainty of our inferences
with rigour (e.g. Underwood 1981, 1997).

An important advance in the analysis of multivariate
data in ecology was the development of non-parametric
methods for testing hypotheses concerning whole
communities (e.g. Clarke 1988, 1993; Smith et al.
1990; Biondini et al. 1991). Some parallel advances
were made in the context of tests for significant clus-
ters in cluster analysis (e.g. Good 1982; Gordon 1994).
Before these applications, particularly ANOSIM (Clarke
1993), became widely available, most multivariate
analyses in ecology focused on the reduction of dimen-
sionality to produce and interpret patterns (ordination
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methods) and the use of numerical strategies for placing
observations into natural groups (clustering). These
methods, although extremely useful towards their
purpose, do not rigorously express the nature and
degree of uncertainty concerning a priori hypotheses.
Methods like Mantel’s test (Mantel 1967), ANOSIM

(Clarke 1993) and multiresponse permutation pro-
cedures (Mielke et al. 1976) allow such rigorous
probabilistic statements to be made for multivariate
ecological data.

The drawback to such non-parametric tests is that
they cannot easily be extended to the multifactorial
designs so common now in ecological studies. Two
sticking points prevented this: (i) the lack of a gener-
alized statistic for partitioning variation, and (ii) the lack
of appropriate permutation methods (e.g. Clarke 1993;
Legendre & Anderson 1999). Although traditional 
test-statistics used for MANOVA allow partitioning, 
their restrictive assumptions have prevented their
effective use in ecology. The method of distance-
based redundancy analysis (Legendre & Anderson
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Table 4. Non-parametric MANOVA on Bray–Curtis dis-
tances for assemblages of organisms colonizing wooden
settlement panels of three different sizes after 3, 6, 9, 12 or
18 months on an intertidal oyster farm

Source d.f. SS MS F P

Time 4 30 305.71 7576.43 20.50 0.0002
Patch Size 2 6414.99 3207.49 8.68 0.0002
Time 3 patch 8 6224.03 778.004 2.10 0.0062
Sticks (time 3 15 5544.66 369.64 1.28 0.3384

patch)
Residual 30 8697.09 289.90
Total 59 57 186.48

3 6 9 12 18
Comparison months months months months months

Small versus 2.24* 1.86* 1.48* 2.00* 1.38
medium

Small versus 2.30* 2.87* 2.38* 2.54* 3.02*
large

Medium versus 1.49 1.47 1.69 1.75* 1.43
large

*P < 0.05; pair-wise a posteriori tests among patch sizes
within each time using the t-statistic. Sticks were ignored in
the pair-wise tests. There were 35 possible permutations for
each.

Fig. 9. Two-factor non-metric MDS plots of assemblages
colonizing intertidal wooden settlement panels of three dif-
ferent sizes for (a) periods of 3, 6 or 9 months and (b) peri-
ods of 12 or 18 months for raw data and (c) where centroids
were plotted corresponding to each stick across all combi-
nations of time 3 patch size. The points corresponding to
assemblages after particular times of submersion (numbers
indicate the period in months) have been outlined for clar-
ity. (d), Small; (h), medium; (m), large.



1999) largely solved these issues, but it has many 
rather complicated steps and involves the use of a
correction constant to distances. Although this
correction does not adversely affect the test (generally
making it more conservative, if anything), accurate
P-values are not given by this method in the case of
anything other than a one-factor design (McArdle &
Anderson, in press).

The method presented here has, in some sense,
combined the best of both worlds. Like the traditional
test-statistics, it can partition variation according to 
any ANOVA design. Like the most flexible non-
parametric methods, it can be based on any sym-
metric dissimilarity or distance measure (or their
ranks) and provides a P-value using appropriate per-
mutation methods. That is, one can still choose a rel-
evant transformation and an appropriate distance
measure (or use ranks of distances), consistent with the
method of ordination used to visualize patterns. By
using permutations, the test requires no specific
assumption concerning the number of variables or the
nature of their individual distributions or correlations.
The statistic used is analogous to Fisher’s F-ratio and
is constructed from sums of squared distances (or 
dissimilarities) within and between groups. Another
feature of this statistic is that it is equal to to Fisher’s
original F-ratio in the case of one variable and when
Euclidean distances are used.

It is perhaps important to point out that the
Bray–Curtis measure of dissimilarity may or may not
be the most appropriate measure to use in any given
situation. A point still commonly ignored is that
Bray–Curtis and related measures, such as Kulczynski’s
coefficient, will tend to under-estimate true ecological
distances when distances become large (i.e. when
observations have very few species in common), 
as determined by simulations (Faith et al. 1987; 
Belbin 1991). The Bray–Curtis measure may therefore
only be useful insofar as it will produce reasonable
ecological ordinations, through the ranks used for
MDS. In light of this issue, Faith (1990) proposed
doing MANOVA on ordination scores obtained from
MDS.

An analysis based only on ordination scores will omit
some portion of the ecological information contained
in the original distance matrix and will depend on the
number of dimensions chosen for the MDS (Clarke
1993). The severity of this potential problem will
obviously increase with increases in the stress value
associated with an MDS plot. The actual amount 
and the kind of information lost in reducing dimensions
using MDS are generally unknown and will depend 
on the particular data set. Also, any subsequent
statistical inferences on ordination scores (using
traditional MANOVA, as described in Faith 1990; or
based on permutation tests) would be limited to 
points in the ordination plots, rather than being applic-
able to the original observations.

It is not possible to identify a single ‘best’ distance
measure for ecological data. The method described
here may be used with any distance measure chosen
(or on ranks of distances). It is useful to have the flex-
ibility to choose a distance measure appropriate for the
data and hypothesis being tested. Although the
Bray–Curtis measure has now become commonplace
in ecological studies (perhaps due to its availability in
the PRIMER computer program, or due to its intuitive
interpretation as ‘percentage difference’, or due to the
results presented in Faith et al. 1987), there are still
many rivals. Over 60 measures of similarity or dissim-
ilarity have been described, with very few actual com-
parisons of their performance with different kinds 
of ecological data (see Lamont & Grant 1979;
Legendre & Legendre 1998). This is undoubtedly an
area needing further research.

The approach advocated here is that multifactorial
analysis of variance, as successfully applied to univariate
data in ecology (e.g. Underwood 1981, 1997), can and
should also be applied to multivariate data for testing
hypotheses in a logical and rigorous way. It stands to
reason that the developments in experimental design
for ecology that require multifactorial ANOVA, in order
to, for example, avoid pseudo-replication (Hurlbert
1984), test for generality (Beck 1997) or test for envir-
onmental impact (e.g. Green 1979, 1993; Underwood
1993; Glasby 1997), should be incorporated into 
multivariate analysis. The method described here
allows that to happen, but within a framework that is
general enough to suit our need for few assumptions
and flexibility in the multivariate analysis of ecological
data.
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